Chapter 6, Question 7

7. Let θ be a root of the equation $x^{6}+2 x^{2}+2=0$. Let $K=\mathbb{Q}(\theta)$. How many distinct elements are there in the complete set of conjugates of $\alpha=\theta^{2}+\theta^{4}$ relative to K ?

Solution. As θ is a root of $x^{6}+2 x^{2}+2$ we have $\theta^{6}+2 \theta^{2}+2=0$ so that

$$
\theta^{6}=-2-2 \theta^{2}, \theta^{8}=-2 \theta^{2}-2 \theta^{4}
$$

Let $\alpha=\theta^{2}+\theta^{4}$. Then

$$
\begin{aligned}
\alpha^{2} & =\left(\theta^{2}+\theta^{4}\right)^{2}=\theta^{4}+2 \theta^{6}+\theta^{8} \\
& =\theta^{4}+2\left(-2-2 \theta^{2}\right)+\left(-2 \theta^{2}-2 \theta^{4}\right) \\
& =\theta^{4}-4-4 \theta^{2}-2 \theta^{2}-2 \theta^{4} \\
& =-4-6 \theta^{2}-\theta^{4} .
\end{aligned}
$$

Further

$$
\begin{aligned}
\alpha^{3} & =\alpha \cdot \alpha^{2}=\left(\theta^{2}+\theta^{4}\right)\left(-4-6 \theta^{2}-\theta^{4}\right) \\
& =-4 \theta^{2}-4 \theta^{4}-6 \theta^{4}-6 \theta^{6}-\theta^{6}-\theta^{8} \\
& =-4 \theta^{2}-10 \theta^{4}-7 \theta^{6}-\theta^{8} \\
& =-4 \theta^{2}-10 \theta^{4}-7\left(-2-2 \theta^{2}\right)-\left(-2 \theta^{2}-2 \theta^{4}\right) \\
& =-4 \theta^{2}-10 \theta^{4}+14+14 \theta^{2}+2 \theta^{2}+2 \theta^{4} \\
& =14+12 \theta^{2}-8 \theta^{4} .
\end{aligned}
$$

We now seek $A, B, C \in \mathbb{Q}$ such that

$$
\alpha^{3}+A \alpha^{2}+B \alpha+C=0
$$

We want

$$
\left(14+12 \theta^{2}-8 \theta^{4}\right)+A\left(-4-6 \theta^{2}-\theta^{4}\right)+B\left(\theta^{2}+\theta^{4}\right)+C=0,
$$

that is

$$
(14-4 A+C)+(12-6 A+B) \theta^{2}+(-8-A+B) \theta^{4}=0 .
$$

Since the polynomial $x^{6}+2 x^{2}+2$ is 2-Eisenstein, it is irreducible and therefore it is the minimal polynomial of θ. Hence θ cannot satisfy a nontrivial quartic polynomial over \mathbb{Q} and so

$$
\begin{aligned}
& 14-4 A+C=0 \\
& 12-6 A+B=0 \\
& -8-A+B=0
\end{aligned}
$$

Solving these equations for A, B, C we obtain

$$
A=4, B=12, C=2
$$

Thus $\theta^{2}+\theta^{4}$ is a root of the cubic polynomial $x^{3}+4 x^{2}+12 x+2$. This polynomial is 2-Eisenstein so it is irreducible. Hence

$$
\left[\mathbb{Q}\left(\theta^{2}+\theta^{4}\right): \mathbb{Q}\right]=\operatorname{deg}\left(x^{3}+4 x^{2}+12 x+2\right)=3 .
$$

Thus there are three distinct conjugates in the complete set of six conjugates of α relative to K, each repeated twice.

February 24, 2004

