EXERCISES 7, QUESTION 1

1. Let D denote the discriminant of

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x] .
$$

Prove that

$$
D \equiv 0 \text { or } 1(\bmod 4)
$$

Solution. Let

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x] .
$$

Let $\theta_{1}, \ldots, \theta_{n}$ be the n complex roots of $f(x)$. The discriminant D of f is given by

$$
\prod_{1 \leq i<j \leq n}\left(\theta_{i}-\theta_{j}\right)^{2}
$$

Clearly D is a symmetric polynomial in $\theta_{1}, \ldots, \theta_{n}$ so by the symmetric function theorem D is a polynomial with rational coefficients in the elementary symmetric polynomials

$$
\begin{array}{r}
\theta_{1}+\cdots+\theta_{n}=-a_{n-1} \in \mathbb{Z} \\
\theta_{1} \theta_{2}+\cdots+\theta_{n-1} \theta_{n}=a_{n-2} \in \mathbb{Z} \\
\cdots \\
\theta_{1} \theta_{2} \cdots \theta_{n}=(-1)^{n} a_{0} \in \mathbb{Z}
\end{array}
$$

showing that $D \in \mathbb{Q}$. Each of $\theta_{1}, \ldots, \theta_{n}$, being a root of a monic polynomial with integer coefficients, is an algebraic integer, and so D is an algebraic integer. Hence D is both rational and an algebraic integer so $D \in \mathbb{Z}$.

Now we have the value of determinant

$$
\left|\begin{array}{ccccc}
\theta_{1}^{n-1} & \theta_{1}^{n-2} & \cdots & \theta_{1} & 1 \\
\theta_{2}^{n-1} & \theta_{2}^{n-2} & \cdots & \theta_{2} & 1 \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
\theta_{n}^{n-1} & \theta_{n}^{n-2} & \cdots & \theta_{n} & 1
\end{array}\right|=\prod_{1 \leq i<j \leq n}\left(\theta_{i}-\theta_{j}\right) .
$$

In the expansion of the above determinant there are n ! terms, half with a plus sign and half with a minus sign. Let the sum of those with a plus sign be λ and those with the minus sign μ so that

$$
\prod_{1 \leq i<j \leq n}\left(\theta_{i}-\theta_{j}\right)=\lambda-\mu
$$

Set $A=\lambda+\mu$ and $B=\lambda \mu$ so that

$$
D=(\lambda-\mu)^{2}=(\lambda+\mu)^{2}-4 \lambda \mu=A^{2}-4 B .
$$

As $\theta_{1}, \ldots, \theta_{n}$ are algebraic integers so are λ and μ. Thus A and B are algebraic integers. As A is a symmetric function of $\theta_{1}, \ldots, \theta_{n}$ with rational coefficients arguing as before $A \in \mathbb{Q}$. Hence $A \in \mathbb{Z}$. Then

$$
B=\frac{A^{2}-D}{4} \in \mathbb{Q}
$$

But B is an algebraic integer so $B \in \mathbb{Z}$. Hence

$$
D \equiv A^{2} \equiv 0,1(\bmod 4)
$$

February 12, 2004

