12. Prove from first principles that $K=\mathbb{Q}(\theta), \theta^{3}+30 \theta+90=0$, is a pure cubic field, and express K in the form $K=\mathbb{Q}\left(m^{1 / 3}\right)$ for some cubefree integer m.

Solution. We use Cardan's method of solving a cubic equation. If $a, b, c \in \mathbb{C}$ are such that

$$
\begin{equation*}
a^{3}+b^{3}=-90, a b=-10 \tag{1}
\end{equation*}
$$

then

$$
(a+b)^{3}+30(a+b)+90=\left(a^{3}+b^{3}+90\right)+3(a b+10)(a+b)=0
$$

showing that $x=a+b$ is a root of $x^{3}+30 x+90=0$. We now find a and b satisfying (1). From (1) we see that

$$
a^{3}+b^{3}=-90, a^{3} b^{3}=-100
$$

so that a^{3}, b^{3} are the roots of the quadratic equation

$$
t^{2}+90 t-1000=0
$$

Solving the quadratic equation, we obtain without loss of generality

$$
a^{3}=\frac{-90+\sqrt{12100}}{2}=10
$$

and

$$
b^{3}=\frac{-90-\sqrt{12100}}{2}=-100,
$$

so that

$$
a=\sqrt[3]{10}, b=-(\sqrt[3]{10})^{2}
$$

Thus

$$
\theta=\sqrt[3]{10}-(\sqrt[3]{10})^{2}
$$

is a root of $\theta^{3}+30 \theta+90=0$. Hence

$$
K=\mathbb{Q}(\theta)=\mathbb{Q}\left(\sqrt[3]{10}-(\sqrt[3]{10})^{2}\right) \subseteq \mathbb{Q}(\sqrt[3]{10})
$$

Now

$$
\theta^{2}=\left(\sqrt[3]{10}-(\sqrt[3]{10})^{2}\right)^{2}=-20+10 \sqrt[3]{10}+(\sqrt[3]{10})^{2}
$$

so that
$20+\theta+\theta^{2}=20+\left(\sqrt[3]{10}-(\sqrt[3]{10})^{2}\right)+\left(-20+10 \sqrt[3]{10}+(\sqrt[3]{10})^{2}\right)=11 \sqrt[3]{10}$
and thus

$$
\sqrt[3]{10}=\frac{20}{11}+\frac{1}{11} \theta+\frac{1}{11} \theta^{2} \in K
$$

and

$$
\mathbb{Q}(\sqrt[3]{10}) \subseteq K
$$

This completes the proof that $K=\mathbb{Q}(\sqrt[3]{10})$, so K is a pure cubic field.

February 23, 2004

