EXERCISES 7, QUESTION 2

2. Using the method of Example 7.1.6, prove that $\left\{1, \sqrt[3]{3},(\sqrt[3]{3})^{2}\right\}$ is an integral basis for $\mathbb{Q}(\sqrt[3]{3})$. What is the discriminant of $\mathbb{Q}(\sqrt[3]{3})$?

Solution. Let $\theta=\sqrt[3]{3}$ and set $K=\mathbb{Q}(\theta)=\mathbb{Q}(\sqrt[3]{3})$. Since θ is a root of the irreducible polynomial $x^{3}-3 \in \mathbb{Z}[x]$ (it is 3-Eisenstein), we have $\theta \in O_{K}$, $\operatorname{irr}_{\mathbb{Q}} \theta=x^{3}-3$ and $[K: \mathbb{Q}]=\operatorname{deg}\left(\operatorname{irr}_{\mathbb{Q}} \theta\right)=3$. Further

$$
D(\theta)=-4 \cdot 0^{3}-27(-3)^{2}=-243=-3^{5} .
$$

As $\frac{D(\theta)}{d(K)}$ is a perfect square, we have

$$
\frac{D(\theta)}{d(K)}=1^{2}, 3^{2} \text { or } 3^{4}
$$

so that

$$
d(K)=-243,-27 \text { or }-3 .
$$

Each of these possibilities is $\equiv 1(\bmod 4)$ so we cannot immediately exclude any of them.

We show that

$$
O_{K}=\mathbb{Z}+\mathbb{Z} \theta+\mathbb{Z} \theta^{2}, d(K)=-243
$$

Clearly

$$
\mathbb{Z}+\mathbb{Z} \theta+\mathbb{Z} \theta^{2} \subseteq O_{K}
$$

as $\theta \in O_{K}$. We must show that

$$
O_{K} \subseteq \mathbb{Z}+\mathbb{Z} \theta+\mathbb{Z} \theta^{2}
$$

Let $\alpha \in O_{K}$. Then $\alpha \in K$ so there exist $x_{1}, x_{2}, x_{3} \in \mathbb{Q}$ such that

$$
\alpha=x_{1}+x_{2} \theta+x_{3} \theta^{2} .
$$

The K-conjugates of α are

$$
\begin{aligned}
& \alpha=x_{1}+x_{2} \theta+x_{3} \theta^{2}, \\
& \alpha^{\prime}=x_{1}+x_{2} \omega \theta+x_{3} \omega^{2} \theta^{2}, \\
& \alpha^{\prime \prime}=x_{1}+x_{2} \omega^{2} \theta+x_{3} \omega \theta^{2},
\end{aligned}
$$

where $\omega^{3}=1, \omega \neq 1, \omega^{2}+\omega+1=0$. Hence

$$
\left.\begin{array}{r}
\alpha+\alpha^{\prime}+\alpha^{\prime \prime}=3 x_{1} \tag{1}\\
\theta^{2}\left(\alpha+\omega^{2} \alpha^{\prime}+\omega \alpha^{\prime \prime}\right)=9 x_{2} \\
\theta\left(\alpha+\omega \alpha^{\prime}+\omega^{2} \alpha^{\prime \prime}\right)=9 x_{3}
\end{array}\right\}
$$

as $\theta^{3}=3$. As $\alpha \in O_{K}$ we have $\alpha, \alpha^{\prime}, \alpha^{\prime \prime} \in \Omega$. As $\theta \in O_{K}$ we have $\theta, \theta^{2} \in \Omega$. As ω, ω^{2} are roots of $x^{2}+x+1 \in \mathbb{Z}[x], \omega, \omega^{2} \in \Omega$. Thus the left hand sides of (1) are in Ω. Hence the right hand sides of (1) are in Ω. They are clearly in \mathbb{Q}, so they are in $\Omega \cap \mathbb{Q}=\mathbb{Z}$. Hence

$$
9 x_{1}, 9 x_{2}, 9 x_{3} \in \mathbb{Z}
$$

Set

$$
y_{i}=9 x_{i}(i=1,2,3)
$$

so that $y_{i} \in \mathbb{Z}(i=1,2,3)$ and

$$
9 \alpha=y_{1}+y_{2} \theta+y_{3} \theta^{2} .
$$

Clearly (as $3=\theta^{3}$) $\theta \mid y_{1}$ so $3 \mid y_{1}$. Hence $\theta^{2}\left|y_{2} \theta, \theta\right| y_{2}$ so $3 \mid y_{2}$. Then $\theta^{3}\left|y_{3} \theta^{2}, \theta\right| y_{3}$ so $3 \mid y_{3}$. Set

$$
y_{i}=3 z_{i}(i=1,2,3)
$$

so

$$
z_{i} \in \mathbb{Z}(i=1,2,3) .
$$

Then

$$
3 \alpha=z_{1}+z_{2} \theta+z_{3} \theta^{2} .
$$

Clearly $\theta \mid z_{1}$ so $3 \mid z_{1}$. Hence $\theta^{2}\left|z_{2} \theta, \theta\right| z_{2}$ so $3 \mid z_{2}$. Then $\theta^{3}\left|z_{3} \theta^{2}, \theta\right| z_{3}$ so $3 \mid z_{3}$. Set

$$
z_{i}=3 w_{i}(i=1,2,3)
$$

so

$$
w_{i} \in \mathbb{Z}(i=1,2,3)
$$

Then

$$
\alpha=w_{1}+w_{2} \theta+w_{3} \theta^{2} \in \mathbb{Z}+\mathbb{Z} \theta+\mathbb{Z} \theta^{2}
$$

Hence

$$
O_{K} \subseteq \mathbb{Z}+\mathbb{Z} \theta+\mathbb{Z} \theta^{2}
$$

so we have proved

$$
\begin{equation*}
O_{K}=\mathbb{Z}+\mathbb{Z} \theta+\mathbb{Z} \theta^{2} \tag{2}
\end{equation*}
$$

Finally

$$
\begin{aligned}
d(K) & =D\left(1, \theta, \theta^{2}\right) \quad(\text { by }(2)) \\
& =\left|\begin{array}{ccc}
1 & \theta & \theta^{2} \\
1 & \omega \theta & \omega^{2} \theta^{2} \\
1 & \omega^{2} \theta & \omega \theta^{2}
\end{array}\right|^{2} \\
& =\left|\begin{array}{ccc}
1 & \theta & \theta^{2} \\
0 & (\omega-1) \theta & \left(\omega^{2}-1\right) \theta^{2} \\
0 & \left(\omega^{2}-1\right) \theta & (\omega-1) \theta^{2}
\end{array}\right|^{2} \\
& =\left|\begin{array}{cc}
(\omega-1) \theta & \left(\omega^{2}-1\right) \theta^{2} \\
\left(\omega^{2}-1\right) \theta & (\omega-1) \theta^{2}
\end{array}\right|^{2} \\
& =(\omega-1)^{4} \theta^{6}\left|\begin{array}{cc}
1 & (\omega+1) \\
(\omega+1) & 1
\end{array}\right|^{2} \\
& =(1-\omega)^{6} 3^{2}=(-3 \omega)^{3} 3^{2}=-3^{5} .
\end{aligned}
$$

February 12, 2004

