2. Using the method of Example 7.1.6, prove that $\{1, \sqrt[3]{3}, (\sqrt[3]{3})^2\}$ is an integral basis for $\mathbb{Q}(\sqrt[3]{3})$. What is the discriminant of $\mathbb{Q}(\sqrt[3]{3})$?

Solution. Let $\theta = \sqrt[3]{3}$ and set $K = \mathbb{Q}(\theta) = \mathbb{Q}(\sqrt[3]{3})$. Since θ is a root of the irreducible polynomial $x^3 - 3 \in \mathbb{Z}[x]$ (it is 3-Eisenstein), we have $\theta \in O_K$, $\operatorname{irr}_{\mathbb{Q}}\theta = x^3 - 3$ and $[K : \mathbb{Q}] = \operatorname{deg}(\operatorname{irr}_{\mathbb{Q}}\theta) = 3$. Further

$$D(\theta) = -4 \cdot 0^3 - 27(-3)^2 = -243 = -3^5.$$

As $\frac{D(\theta)}{d(K)}$ is a perfect square, we have

$$\frac{D(\theta)}{d(K)} = 1^2, \ 3^2 \text{ or } 3^4$$

so that

$$d(K) = -243, -27 \text{ or } -3.$$

Each of these possibilities is $\equiv 1 \pmod{4}$ so we cannot immediately exclude any of them.

We show that

$$O_K = \mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}\theta^2, \ d(K) = -243.$$

Clearly

$$\mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}\theta^2 \subseteq O_K$$

as $\theta \in O_K$. We must show that

$$O_K \subseteq \mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}\theta^2.$$

Let $\alpha \in O_K$. Then $\alpha \in K$ so there exist $x_1, x_2, x_3 \in \mathbb{Q}$ such that

$$\alpha = x_1 + x_2\theta + x_3\theta^2.$$

The K-conjugates of α are

$$\alpha = x_1 + x_2\theta + x_3\theta^2,$$

$$\alpha' = x_1 + x_2\omega\theta + x_3\omega^2\theta^2,$$

$$\alpha'' = x_1 + x_2\omega^2\theta + x_3\omega\theta^2,$$

where $\omega^3 = 1$, $\omega \neq 1$, $\omega^2 + \omega + 1 = 0$. Hence

$$\begin{array}{c}
\alpha + \alpha' + \alpha'' = 3x_1, \\
\theta^2(\alpha + \omega^2 \alpha' + \omega \alpha'') = 9x_2, \\
\theta(\alpha + \omega \alpha' + \omega^2 \alpha'') = 9x_3,
\end{array}$$
(1)

as $\theta^3 = 3$. As $\alpha \in O_K$ we have α , α' , $\alpha'' \in \Omega$. As $\theta \in O_K$ we have $\theta, \theta^2 \in \Omega$. As ω, ω^2 are roots of $x^2 + x + 1 \in \mathbb{Z}[x]$, $\omega, \omega^2 \in \Omega$. Thus the left hand sides of (1) are in Ω . Hence the right hand sides of (1) are in Ω . They are clearly in \mathbb{Q} , so they are in $\Omega \cap \mathbb{Q} = \mathbb{Z}$. Hence

$$9x_1, 9x_2, 9x_3 \in \mathbb{Z}.$$

 Set

$$y_i = 9x_i \ (i = 1, 2, 3)$$

so that $y_i \in \mathbb{Z}$ (i = 1, 2, 3) and

$$9\alpha = y_1 + y_2\theta + y_3\theta^2.$$

Clearly (as $3 = \theta^3$) $\theta \mid y_1$ so $3 \mid y_1$. Hence $\theta^2 \mid y_2\theta$, $\theta \mid y_2$ so $3 \mid y_2$. Then $\theta^3 \mid y_3\theta^2$, $\theta \mid y_3$ so $3 \mid y_3$. Set

$$y_i = 3z_i \ (i = 1, 2, 3)$$

 \mathbf{SO}

$$z_i \in \mathbb{Z} \ (i=1,2,3).$$

Then

$$3\alpha = z_1 + z_2\theta + z_3\theta^2$$

Clearly $\theta \mid z_1$ so $3 \mid z_1$. Hence $\theta^2 \mid z_2 \theta$, $\theta \mid z_2$ so $3 \mid z_2$. Then $\theta^3 \mid z_3 \theta^2$, $\theta \mid z_3$ so $3 \mid z_3$. Set

$$z_i = 3w_i \ (i = 1, 2, 3)$$

 \mathbf{SO}

$$w_i \in \mathbb{Z} \ (i=1,2,3).$$

Then

$$\alpha = w_1 + w_2\theta + w_3\theta^2 \in \mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}\theta^2.$$

Hence

$$O_K \subseteq \mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}\theta^2$$

so we have proved

$$O_K = \mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}\theta^2.$$
⁽²⁾

Finally

$$\begin{split} d(K) &= D(1,\theta,\theta^2) \quad (\text{by } (2)) \\ &= \left| \begin{array}{ccc} 1 & \theta & \theta^2 \\ 1 & \omega\theta & \omega^2\theta^2 \\ 1 & \omega^2\theta & \omega\theta^2 \end{array} \right|^2 \\ &= \left| \begin{array}{ccc} 1 & \theta & \theta^2 \\ 0 & (\omega-1)\theta & (\omega^2-1)\theta^2 \\ 0 & (\omega^2-1)\theta & (\omega-1)\theta^2 \end{array} \right|^2 \\ &= \left| \begin{array}{ccc} (\omega-1)\theta & (\omega^2-1)\theta^2 \\ (\omega^2-1)\theta & (\omega-1)\theta^2 \end{array} \right|^2 \\ &= (\omega-1)^4\theta^6 \left| \begin{array}{ccc} 1 & (\omega+1) \\ (\omega+1) & 1 \end{array} \right|^2 \\ &= (1-\omega)^63^2 = (-3\omega)^33^2 = -3^5. \end{split}$$

February 12, 2004