5. Let $K=\mathbb{Q}(\theta)$, where $\theta^{3}-9 \theta-6=0$. Prove that $\left\{1, \theta, \theta^{2}\right\}$ is an integral basis for K and that $d(K)=2^{3} \cdot 3^{5}$.

Solution. Let $K=\mathbb{Q}(\theta)$,where $\theta^{3}-9 \theta-6=0$. The monic polynomial $x^{3}-9 x-6 \in \mathbb{Z}[x]$ is 3 -Eisenstein and so irreducible. Hence $[K: \mathbb{Q}]=3$ and $\operatorname{irr}_{\mathbb{Q}} \theta=x^{3}-9 x-6$. Thus $\theta \in O_{K}$. Further $D(\theta)=-4(-9)^{3}-27(-6)^{2}=$ $2^{3} \cdot 3^{5}$. As $D(\theta) / d(K)$ is square we have

$$
\frac{D(\theta)}{d(K)}=1,2^{2}, 3^{2}, 6^{2}, 9^{2} \text { or } 18^{2} .
$$

Hence

$$
d(K)=2^{3} \cdot 3^{5}, 2 \cdot 3^{5}, 2^{3} \cdot 3^{3}, 2 \cdot 3^{4}, 2^{3} \cdot 3 \text { or } 2 \cdot 3 .
$$

As $d(K) \equiv 0$ or $1(\bmod 4)$ we deduce that

$$
d(K)=2^{3} \cdot 3^{5}, 2^{3} \cdot 3^{3} \text { or } 2^{3} \cdot 3
$$

We are going to show that

$$
O_{K}=\mathbb{Z}+\mathbb{Z} \theta+\mathbb{Z} \theta^{2}, d(K)=2^{3} \cdot 3^{5} .
$$

Suppose $d(K)=2^{3} \cdot 3^{3}$ or $2^{3} \cdot 3$. Then

$$
d(K)=\frac{D(\theta)}{3^{2}} \text { or } \frac{D(\theta)}{3^{4}}
$$

so there must exist an integer of K of the form $\frac{a+b \theta+c \theta^{2}}{3}(a, b, c \in \mathbb{Z})$ with

$$
\operatorname{gcd}(a, b, c, 3)=1
$$

If $c \not \equiv 0(\bmod 3)$ then $c=3 m \pm 1(m \in \mathbb{Z})$ so

$$
\frac{a+b \theta+c \theta^{2}}{3}=m \theta^{2} \pm\left(\frac{ \pm a \pm b \theta+c \theta^{2}}{3}\right)
$$

and there is an integer of the form

$$
\frac{A+B \theta+\theta^{2}}{3}
$$

If $c \equiv 0(\bmod 3)$, say $c=3 m(m \in \mathbb{Z})$, and $b \not \equiv 0(\bmod 3)$ then $b=3 n \pm 1(n \in$ \mathbb{Z}) so

$$
\frac{a+b \theta+c \theta^{2}}{3}=m \theta^{2}+n \theta \pm\left(\frac{ \pm a+\theta}{3}\right)
$$

and there is an integer of the form

$$
\frac{A+\theta}{3} .
$$

If $c \equiv 0(\bmod 3)$ and $b \equiv 0(\bmod 3)$ then $(a, 3)=1$ in which case

$$
\frac{a+b \theta+c \theta^{2}}{3}=m \theta^{2}+n \theta+\frac{a}{3}
$$

so $\frac{a}{3} \in O_{K}$ and $\frac{a}{3} \in \mathbb{Q}$ giving $\frac{a}{3} \in \mathbb{Z}$, a contradiction, so this case cannot occur.

We show that there are no integers of K of the forms

$$
\text { (I) } \frac{A+\theta}{3}(A \in \mathbb{Z}) \text { and (II) } \frac{A+B \theta+\theta^{2}}{3}(A, B \in \mathbb{Z}) \text {. }
$$

(I) Let $\alpha=\frac{A+\theta}{3} \in O_{K}$. Then

$$
\operatorname{irr}_{\mathbb{Q}}(\alpha)=x^{3}-A x^{2}+\left(\frac{A^{2}}{3}-1\right) x+\left(\frac{-A^{3}+9 A-6}{27}\right) .
$$

As $\alpha \in O_{K}, \operatorname{irr}_{\mathbb{Q}} \alpha \in \mathbb{Z}[x]$ so

$$
\frac{A^{2}}{3}-1 \in \mathbb{Z}, \frac{-A^{3}+9 A-6}{27} \in \mathbb{Z}
$$

Hence $A=3 N$ for some $N \in \mathbb{Z}$ so

$$
\frac{-27 N^{3}+27 N-6}{27} \in \mathbb{Z},
$$

a contradiction.
(II) Let $\alpha=\frac{A+B \theta+\theta^{2}}{3} \in O_{K}$. Then

$$
\begin{aligned}
\operatorname{irr}_{\mathbb{Q}}(\alpha)= & x^{3}-(A+6) x^{2}+\left(\frac{A^{2}}{3}+4 A-B^{2}-2 B+9\right) x \\
& -\frac{1}{27}\left(A^{3}+6 B^{3}+36-9 A B^{2}+81 A+18 A^{2}-54 B-18 A B\right)
\end{aligned}
$$

As $\alpha \in O_{K}, \quad \operatorname{irr}_{\mathbb{Q}} \alpha \in \mathbb{Z}[x]$ so

$$
\frac{A^{2}}{3} \in \mathbb{Z}, \frac{A^{3}+6 B^{3}+36-9 A B^{2}+18 A^{2}-18 A B}{27} \in \mathbb{Z}
$$

Clearly $A=3 N$ for some $N \in \mathbb{Z}$ so

$$
\frac{27 N^{3}+6 B^{3}+36-27 N B^{2}+162 N^{2}-54 N B}{27} \in \mathbb{Z}
$$

and thus

$$
\begin{equation*}
\frac{6 B^{3}+36}{27} \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Hence

$$
2 B^{3}+12 \equiv 0(\bmod 9)
$$

so $2 B^{3} \equiv 0(\bmod 3)$ giving $B \equiv 0(\bmod 3)$ contradicting with (1). Hence $d(K) \neq 2^{3} \cdot 3^{3}$ or $2^{3} \cdot 3$ so $d(K)=2^{3} \cdot 3^{5}$ and

$$
D\left(1, \theta, \theta^{2}\right)=D(\theta)=2^{3} \cdot 3^{5}=d(K)
$$

so $\left\{1, \theta, \theta^{2}\right\}$ is an integral basis for K.

February 23, 2004

