EXERCISES 9, QUESTION 1

1. Let p be a prime such that $p \equiv 3$ or $5(\bmod 8)$. Prove that there does not exist an element $\alpha \in O_{\mathbb{Q}(\sqrt{p})}$ such that $N(\alpha)=2$.

Solution. Suppose there exists $\alpha \in O_{\mathbb{Q}(\sqrt{\bar{p}})}$, where p is a prime $\equiv 3$ or 5 $(\bmod 8)$, such that $N(\alpha)=2$. As $\alpha \in O_{\mathbb{Q}(\sqrt{p})}$, there are integers a and b such that

$$
\alpha=\frac{a+b \sqrt{p}}{2}, a \equiv b(\bmod 2) .
$$

Now

$$
N(\alpha)=N\left(\frac{a+b \sqrt{p}}{2}\right)=\left(\frac{a+b \sqrt{p}}{2}\right)\left(\frac{a-b \sqrt{p}}{2}\right)=\frac{a^{2}-p b^{2}}{4}
$$

so

$$
a^{2}-p b^{2}=8
$$

Hence

$$
\left(\frac{2}{p}\right)=\left(\frac{8}{p}\right)=\left(\frac{a^{2}-p b^{2}}{p}\right)=\left(\frac{a^{2}}{p}\right)=1,
$$

contradicting $p \equiv 3$ or $5(\bmod 8)$. Thus no such α exists.

February 8, 2004

