8. Let K be a quadratic field. Let $\alpha \in O_{K}$ be such that $|N(\alpha)|=a b$, where a and b are coprime positive integers. Prove that

$$
<a, \alpha><b, \alpha>=<\alpha>.
$$

Solution. As K is a quadratic field, α has two conjugates, α and α^{\prime}. As $\alpha \in O_{K}$ we have $\alpha^{\prime} \in O_{K}$. Also

$$
a b=|N(\alpha)|=\left|\alpha \alpha^{\prime}\right| .
$$

Thus

$$
\alpha \alpha^{\prime}= \pm a b
$$

Hence

$$
\begin{gathered}
<a, \alpha><b, \alpha>=<a b, \alpha a, \alpha b, \alpha^{2}> \\
=<\alpha \alpha^{\prime}, \alpha a, \alpha b, \alpha^{2}> \\
=<\alpha><\alpha^{\prime}, a, b, \alpha>
\end{gathered}
$$

Now a and b are coprime positive integers so there exist integers r and s such that

$$
1=r a+s b
$$

Hence

$$
1 \in<\alpha^{\prime}, a, b, \alpha>
$$

Thus

$$
<\alpha^{\prime}, a, b, \alpha>=<1>
$$

and

$$
<a, \alpha><b, \alpha>=<\alpha>.
$$

February 18, 2004

