EXERCISES 9, QUESTION 5

5. Let K be an algebraic number field. Let n be a given positive integer. Prove that there are only finitely many integral ideals I of O_{K} such that $N(I)=n$.

Solution. Let the decomposition of the principal ideal $\langle n\rangle$ of O_{K} into prime ideals be

$$
<n>=P_{1}^{a_{1}} \cdots P_{k}^{a_{k}} .
$$

Let I be an ideal (if any) of O_{K} such that

$$
N(I)=n .
$$

Then

$$
<N(I)>=P_{1}^{a_{1}} \cdots P_{k}^{a_{k}} .
$$

By Question $4 I \mid<N(I)>$ so that

$$
I \mid P_{1}^{a_{1}} \cdots P_{k}^{a_{k}}
$$

Hence, by Theorem 8.3.2, we have

$$
I=P_{1}^{b_{1}} \cdots P_{k}^{b_{k}}
$$

where $b_{1} \in\left\{0,1, \ldots, a_{1}\right\}, \ldots, b_{k} \in\left\{0,1, \ldots, a_{k}\right\}$. Thus there are at most $\left(a_{1}+1\right) \cdots\left(a_{k}+1\right)$ choices for I.

February 8, 2004

