7. Let $K=\mathbb{Q}(\sqrt{-23})$. Let $I=<2, \frac{1}{2}(1+\sqrt{-23})>$.
(a) Prove that $N(I)=2$.
(b) Prove that $I^{3}=<\frac{-3+\sqrt{-23}}{2}>$.
(c) Use (a) and (b) to prove that I is not a principal ideal.

Solution. (a) Let

$$
I=<2, \frac{1}{2}(1+\sqrt{-23})>, \quad J=<2, \frac{1}{2}(1-\sqrt{-23})>.
$$

Then

$$
\begin{aligned}
I J & =<2, \frac{1}{2}(1+\sqrt{-23})><2, \frac{1}{2}(1-\sqrt{-23})> \\
& =<4,1+\sqrt{-23}, 1-\sqrt{-23}, 6> \\
& =<2><2, \frac{1+\sqrt{-23}}{2}, \frac{1-\sqrt{-23}}{2}, 3>.
\end{aligned}
$$

Now

$$
1=3-2 \in<2, \frac{1+\sqrt{-23}}{2}, \frac{1-\sqrt{-23}}{2}, 3>
$$

so that

$$
<2, \frac{1+\sqrt{-23}}{2}, \frac{1-\sqrt{-23}}{2}, 3>=<1>.
$$

Thus

$$
<2>=I J .
$$

Hence, by Theorems 9.3.2 and 9.2.5, we have

$$
N(I) N(J)=N(I J)=N(<2>)=|N(2)|=2^{2}
$$

so that

$$
N(I)=1,, 2 \text { or } 2^{2} .
$$

If $N(I)=1$ then $I=<1>$. Hence there exist $\alpha, \beta \in O_{K}$ such that

$$
2 \alpha+\frac{1}{2}(1+\sqrt{-23}) \beta=1 .
$$

As $O_{K}=\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{-23}}{2}\right)$ (Theorem 5.4.2), there exist $a, b, c, d \in \mathbb{Z}$ such that

$$
\alpha=a+b\left(\frac{1+\sqrt{-23}}{2}\right), \beta=c+d\left(\frac{1+\sqrt{-23}}{2}\right) .
$$

Hence

$$
2\left(a+b\left(\frac{1+\sqrt{-23}}{2}\right)\right)+\frac{1}{2}(1+\sqrt{-23})\left(c+d\left(\frac{1+\sqrt{-23}}{2}\right)\right)=1 .
$$

Equating real and imaginary parts, we obtain

$$
8 a+4 b+2 c-22 d=4
$$

and

$$
2 b+c+d=0
$$

Eliminating d, we obtain

$$
8 a+48 b+24 c=4,
$$

which is clearly impossible as the left hand side is divisible by 8 and the right hand side is not. Hence $N(I) \neq 1$.

If $N(I)=2^{2}$ then $N(J)=1$ and by exactly the same kind of argument, we get a contradiction. Hence $N(I) \neq 2^{2}$.

This proves that $N(I)=2$.
(b) We have

$$
\begin{aligned}
I^{2} & =<2, \frac{1}{2}(1+\sqrt{-23})>^{2}=<4,1+\sqrt{-23},\left(\frac{1+\sqrt{-23}}{2}\right)^{2}> \\
& =<4,1+\sqrt{-23}, \frac{-11+\sqrt{-23}}{2}> \\
& =<4, \frac{-11+\sqrt{-23}}{2}>
\end{aligned}
$$

as

$$
1+\sqrt{-23}=3 \cdot 4+2\left(\frac{-11+\sqrt{-23}}{2}\right) .
$$

Then

$$
\begin{aligned}
I^{3}= & I^{2} I=<4, \frac{-11+\sqrt{-23}}{2}><2, \frac{1+\sqrt{-23}}{2}> \\
= & <8,-11+\sqrt{-23}, 2+2 \sqrt{-23}, \frac{-17-5 \sqrt{-23}}{2}> \\
= & <8,-11+\sqrt{-23}, \frac{-17-5 \sqrt{-23}}{2}> \\
& (\text { as } 2+2 \sqrt{-23}=3 \cdot 8+2(-11+\sqrt{-23})) \\
= & <8,-11+\sqrt{-23}, \frac{-17-5 \sqrt{-23}}{2}+3(-11+\sqrt{-23})> \\
= & <8,-11+\sqrt{-23}, \frac{-83+\sqrt{-23}}{2}> \\
= & <8,8+(-11+\sqrt{-23}), 5 \cdot 8+\left(\frac{-83+\sqrt{-23}}{2}\right)> \\
= & <8,-3+\sqrt{-23}, \frac{-3+\sqrt{-23}}{2}> \\
= & <8, \frac{-3+\sqrt{-23}}{2}> \\
= & <\frac{-3+\sqrt{-23}}{2}>
\end{aligned}
$$

as

$$
8=\left(\frac{-3-\sqrt{-23}}{2}\right)\left(\frac{-3+\sqrt{-23}}{2}\right) .
$$

(c) Suppose I is a principal ideal, say

$$
I=<\frac{a+b \sqrt{-23}}{2}>
$$

where $a, b \in \mathbb{Z}$ are such that $a \equiv b(\bmod 2)$.
From (a) we have

$$
\left.2=N(I)=N\left(<\frac{a+b \sqrt{-23}}{2}\right\rangle\right)=\left|N\left(<\frac{a+b \sqrt{-23}}{2}>\right)\right|=\frac{a^{2}+23 b^{2}}{4},
$$

so that

$$
a^{2}+23 b^{2}=8 .
$$

This equation has no solutions in integers a and b, a contradiction. Thus I is not principal.

From (b) we have

$$
<\frac{-3+\sqrt{-23}}{2}>=I^{3}=<\frac{a+b \sqrt{-23}}{2}>^{3}=<\left(\frac{a+b \sqrt{-23}}{2}\right)^{3}>
$$

so that

$$
\frac{-3+\sqrt{-23}}{2}= \pm\left(\frac{a+b \sqrt{-23}}{2}\right)^{3}
$$

as the only units in $\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{-23}}{2}\right)$ are ± 1. Replacing (a, b) by $(-a,-b)$, if necessary, we may suppose that the + sign holds. Hence

$$
-12+4 \sqrt{-23}=(a+b \sqrt{-23})^{3}=\left(a^{3}-69 a b^{2}\right)+\left(3 a^{2} b-23 b^{3}\right) \sqrt{-23}
$$

Thus

$$
\begin{align*}
& a^{3}-69 a b^{2}=-12 \tag{1}\\
& 3 a^{2} b-23 b^{3}=4 \tag{2}
\end{align*}
$$

From (2) we deduce that $b \mid 4$ so that $b= \pm 1, \pm 2, \pm 4$. If $b= \pm 1$ then (2) gives

$$
3 a^{2}-23= \pm 4
$$

so that

$$
a= \pm 3, b= \pm 1
$$

but these values do not satisfy (1). If $b= \pm 2$ then (2) gives

$$
3 a^{2}-92= \pm 2
$$

which has no integral solutions. If $b= \pm 4$ then (2) gives

$$
3 a^{2}-368= \pm 1,
$$

which has no integral solutions. Hence I is not principal.

February 18, 2004

