Chapter 9, Question 8
8. Let K be an algebraic number field and O_{K} its ring of integers. Let I be an integral ideal of O_{K} such that $N(I)=|N(a)|$ for some $a \in I$. Prove that $I=\langle a\rangle$.

Solution. If $a=0$, then $N(I)=0$ so $I=<0>=<a>$. Thus we may suppose that $a \neq 0$. Hence $N(I) \neq 0$. As $a \in I$, we have $<a>\subseteq I$ so that $I \mid\langle a\rangle$. Thus $\langle a\rangle=I J$ for some integral ideal J of O_{K}. Hence

$$
N(I)=|N(a)|=N(<a>)=N(I J)=N(I) N(J)
$$

so that as $N(I) \neq 0$ we have

$$
N(J)=1
$$

and thus

$$
J=<1>.
$$

Hence

$$
I=I<1>=I J=<a>.
$$

February 18, 2004

