8. Let K be an algebraic number field and O_K its ring of integers. Let I be an integral ideal of O_K such that N(I) = |N(a)| for some $a \in I$. Prove that $I = \langle a \rangle$.

Solution. If a = 0, then N(I) = 0 so I = <0 > = <a>. Thus we may suppose that $a \neq 0$. Hence $N(I) \neq 0$. As $a \in I$, we have $<a> \subseteq I$ so that $I \mid <a>$. Thus <a> = IJ for some integral ideal J of O_K . Hence

$$N(I) = |N(a)| = N(\langle a \rangle) = N(IJ) = N(I)N(J)$$

so that as $N(I) \neq 0$ we have

$$N(J) = 1$$

and thus

$$J = <1>$$
.

Hence

$$I = I < 1 >= IJ = < a > .$$

February 18, 2004