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1. Introduction. Let e be an integer greater than 1 and let p be a
prime = 1 (mod e), say, p = ef+1. Let g be a primitive root (mod p).
The number of solutions (s,?) with 0<s, t<<f—1 of the congruence

(1.1) g** 11 = ¢***(mod p),

where h, k are integers usually taken such that 0 < h, k << e—1, is denoted
by (k, k),. The numbers (h, k), are called cyelotomic numbers of order e
and in addition to k, k and e depend upon p and g. A central problem
in the theory of cyclotomy is to evaluate the cyclotomic numbers in
terms of the solutions of certain diophantine systems involving quadratic
forms. The cases e = 2,3,4,5,6,7,38,9, 10,12, 14, 15, 16, 18, 20, 24 and
30 have been treated by several authors (see for example Dickson ([2],
[3] and [4]), Lehmer ([6], e = 8), Whiteman ([14], [15] and [16], ¢ = 10,
12, 16), Muskat ([8] and [9], e = 14, 24, 30), Baumert and Fredricksen
([1], e = 9, 18), Muskat and Whiteman ([10], e = 20), and Leonard and
Williams ([7], e = T).

In this paper we give the first complete treatment of the case e = 11,
and we begin by stating, for e = 11, some results from the theory of
cyclotomy. All results are stated when e¢ = 11 as this is the only case
we consider. For more general results and proofs the reader is referred
to Dickson [2], [3] and Storer [11].

Let p be a prime of the form p = 11f-+1, so that f is even. The cyclo-
tomic numbers (k, k) = (h, k);; are periodic in both h and k (mod 11).
They also have the following two well known properties:

(1.2) (hy %) = (1L—h, k—h)
and
(1.3) (h, k) = (k, 1.

* The research of both authors was supported by a grant (no. A7233) from
the National Research Council of Canada. The second author’s sabbatical leave at
the University of British Columbia was supported by a N.R.C. travel grant (no.
T 0259).
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Using (1.2) and (1.3) we find that the 11 x 11 matrix whose entry in

the (&, k)-place (0 <k, k< 10) is (h, k) is given by
A B C DEF G HI J K]
B KL MNO&®PO R S L
Cc L J 8T UV WXT M
BAM 8 d R N8 <F TN
E NT RHQ WZ Z V 0

(1.4) F O U X Q G PV Y WP
CULP S FETNW P oL X Q
HQ WZ Z VvV O ENTR
"R X ¥% ¥YUOUND MRS
J S T v vwxrT mMmcL]|’®
KL MNOZ&POGQRSTLB

Thus the evaluation of the 121 cyclotomic numbers (h, k) reduces to
the determination of the 26 quantities 4, B, ..., Z.

Let { = exp(2mi/11), a primitive 11th root of unity. Z[{]is a unique
factorization domain. Let = be any prime factor of p in Z[{]. We order
its conjugates by setting z; = o,(x), 1 < k < 10, where o, is the auto-

morphism determined by ¢, (£) = £*. We write (~) for the 11th power

T
character defined by (y) = {" if y*=Y" = " (mod ). This ordering is
such that d

K
(i):(l) for k=1,2,...,10.

7T 7

If (_g_) = ¢! then, if 7 is any integer satisfying 1/ =1 (mod 11), we have
T

2)-[2f-s-.
73 7

so replacing = by 7; if necessary, we may assume without loss of generality
that (1) =3
T

In the theory of cyclotomy the Jacobi sum plays a fundamental
role. For any pair of integers m, n we define the Jacobi sum of order 11

by
p—1 i 1 Lgin
¥ e — _ m — n
(1.5) J (m,n) = Z (n) ( = ) .

The Jacobi sum has the properties

(1.6) Ji(m,n) =dJ. (n,m) =dJ (—m—mn,n) =dJ,(m, —m—n)
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and, provided no one of the integers m, n, m +n -is divisible by 11,
(1.7) JL(m,n)J (m,n) =p.
From (1.1) and (1.5) we have
10 g mh+nk 10
(1.8) J.(m,n) = > (, k)() = N (b, Rygmhe,
k=0 4 T k=0

as (i) _ ¢, Taking m — 1 in (1.8) we obtain
T

10
(1.9) Ja(1,n) = X' B(i, m)l,
i=0
where
10
(1.10) B(i,j) = > (h, i—jh).
h=0

B(4, j) is the Dickson—Hurwitz sum of order 11. It is defined for all integers ¢
and j and has the properties (see for example [16])

(1.11) B('iyj) =B(’i,10—j),
! f—1, 4 =0 (mod11),
(1.12) B(i, 0) = k
i 42 2= 0 (mod 11),
(1.13) B(i, j) = B(ij, 1),

if j = 0 (mod 11) and j is any solution of the congruence jj =1 (mod 11),

(1.14) fB(i,j) =p—2.
i=0
Whiteman [16] has proved the important property
(1.15) 121(h, k) = —10(p—1)+e(h)+11 ﬁ:’B(vhﬁ—k, v),
where &

0, if h =0 (mod11),

e(h) =
11, if & = 0 (mod 11).

The groundwork for our evaluation of the cyclotomic numbers of
order 11 was laid by Dickson in [2] and [3]. His work leads us to consider
the diophantine system '

(1.16)  1200p = 124% + 33a2 -+ 55a% + 11042 -+ 33022 -+
+ 660 (02 + 2% + 22 + a3 +2%) 5
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(L.17)  45a5 + 5aj + 2007 — 54042 + 72022 — 7203, — 288w, @5+ 302,20, —
—1202,2, — 722, 25 + 200255, — 3602, 25 + 36052, - 1440z, 2, —
— 1440z, 24 +- i440m7w8 — 14402, 2y + 14402, 2, — 1440z, 2,4 +
+28802y2,, = 0,

(1.18) 4525 — 3525 — 80232 -+ 7205 — 72022, — 144, 2y — 1442, 2, +
+150z,25 — 962,22, — 216,25 + 1602, 2, + 1202325 + 2402, 25 +
+ 288023, — 1440522y + 14402, 2, — 14402, 2, + 14402, 2, +
+ 14402, 2,5+ 14402, 2, = 0,

(1.19) 453 + 525 + 2023 — 54022 - 72002 — 72027, — 962, 2, — 482, 1, —
— 1449, 05 4 1262, 25 + 1082, 2, — 36,25 + 20251, — 605,25 -+
+ 6002, 25 + 14401, 2, + 14402, 2, — 1440z52,, + 14402, 2, +
+ 14402, 2,5 + 28802, z, - 1440z, = 0,

(1.20) 2743 + 3505 — 4022 — 360z + 72027 — 72023, — 20,2, — 242, 25 —
— 482wy, — 1440 25+ 114,20, - 48wy w0, + 1442, 35 + 320242, +-
+ 144052, + 14402, 7, + 1440z, @19+ 28802, 25 + 14402, @, -
+ 14402y + 1440202,y = 0,

(1.21) @3+ 20, + 225 = 0 (mod 11),
(1.22) Ty — Ty +3w; = 0 (mod 11),

and we are able to determine the number of integral simultaneous
solutions (x,, ..., z,,) of this system. The following theorem giving the
nature of the solutions is proved in § 4 after we prove some lemmas in
§ 2 and § 3.

THEOREM 1. For a prime p = 1 (mod 11), there are exactly 64 integral
solutions (a,, ..., xy,) of the system (1.16)—(1.22). Of these 64 solutions, 4
trivial solutions are given by

(1.23) +(+5a,0,0,0,0,5, —b,b,b,b),

where 4p = a®+11b% a = 9 (mod 11). Amongst the remaining 60 non-
trivial solutions we can find 3 solutions

(@15 Togy «eey @ygy) (¢t =1,2,3)
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such that all 60 solutions are given by

1l 0 0 0 0 00 00 0fF
i-24) R ) O S i Sy ) 00 00 0O
0 —5/12 —5/12 7/12 —1/12 00 00 O
I AL i e ) ey 00 00 0
i(“‘m-’”zi, ---7a710i) g g ﬁ 1(/)2 1(42 g g (0) g g
0 0 0 0 0 00 01 O
0 0 0 0 0 00 00—-1
0 0 0 0 0 00—-10 O
0 0 0 0 0 —-10 00 O

fori=1,2,3 and k¥ =0,1,2,...,9.

Theorem 1 is proved by establishing a one-to-one correspondence
between solutions - (@, ..., #,) of (1.16)-(1.22) and those elements
K of Z[£] which satisty the conditions KK = pand K = —1 (mod(1—¢)?).

There are four possibilities for K with KK = p:

(I) K ~oy(m,7wsmy7wew,) for some k£ =1, 2, ..., 10,
or
(IT) K ~oy(m,7ymymemg) for some k =1, 2, ..., 10,
or )
(IIT) K ~oy(mymy7w3msm;) for some k =1, 2, ..., 10,
or K
(IV) K ~o(mwymyms7,) for some k =1, 2, ..., 10.

It is proved in § 2 (Lemma 1) that if KeZ[(] is such that KK = p
then K has a unique normalized associate satisfying the same condition.
Let K, (resp., K,; K;) be the unique normalized associate of m;mwsm,76 7,
(TeSP., Ty TyTy 6Ty Ty TaTss7;) and let +(@y; ..., #yy) (2 =1,2,3) be
the solutions of (1.16)—(1.22) corresponding to K; (¢ =1, 2, 3) given by
the correspondence in Lemma 5. The conjugates of K; (i =1, 2, 3) give
rise to the 60 solutions (1.24). These solutions are distinct as in cases
(I), (IT), (III) the conjugates are distinct. The trivial solutions arise from
case (IV) where the conjugates are not distinct.

The quantities K; and K, are (see § 2, Lemma 1) the Jacobi sums
J.(1,1) and J,(1, 2) respectively. (On the other hand Kj; is not a Jacobi
sum.) Using this information we are able to compute the Dickson-Hurwitz
sums B(i,j) in terms of the solutions (@i, ..., #191) = (£1, ..., #1,) and
(@19 <+ v3 T192) = (Y1, «++y Y10) corresponding to the Jacobi sums J.(1,1)
and J,(1,2). The cyclotomic numbers of order 11 are computed using
these values and the result of Whiteman given in (1.15). We have
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THEOREM 2. Let p be a prime =1 (mod 11) and let g be a primitive
root (mod p). Let z be the unique (up to associates) prime factor of p in Z[{],
{ = exp(2ni/11), such that (i) ={. Let (@4, ...,25) and (yq, ..., Yy,) be

7T
the solutions of (1.16)—(1.22) cor esponding to J,(1, 1) and J ,(1, 2) respectively.
Then the cyclotomic numbers of order 11 are given by (1.4) and Table 1.

In § 6 we introduce two so-called Jacobsthal-Whiteman sums pl(a)
and ¢*(a), defined by (6.1), in terms of which we'can eXPress (o5, Loy ..., T1o)
and (Y1, Yz, ..., Y10) as follows (see [13], equations (7.3), (9.5), and il
equations (1.6), for similar results for e — 3, 5 and 7):

T = —(1+9¢'(4)),
Lz, = ¢t (49) + ¢* (49°) + ¢ (49%) + 91 (49*) — 49" (49°) — 4o (495) +
T (497) + ¢ (49°) + 9" (49°) + ¢ (49")

11z, = ¢'(49) +¢'(49%) + ¢ (49°) — 3¢ (4g%) — 39 (497) +
o (49°) + ¢ (49°) + 91 (49"),
(1.25) 11z, = ¢'(49) + ¢ (49%) — 2¢* (49°) — 20 (4¢°) + * (4¢°) + ¢ (49"),

11z; = ¢'(49) — 9" (49%) — ' (49°) + ¢ (49",
llzg = ¢'(4g) — ¢ (49",
11w, = ¢'(4g%) —¢'(4¢°),
11z, = ¢*(49°) — ' (4¢°),
11z, = ¢'(49%) — ' (4g"),
( (49°%).

The corresponding formulae for the y; are obtained by replacing each z;
by y; and each ¢'(4g°) by ¢2(4¢") in (1.25) above.
Finally in § 7 we illustrate the ideas of the paper by a simple example.

2. Technical lemmas. The element 1 —¢, ¢ — exp(2ms/11), is a prime
in Z[{] as its norm is the rational prime 11.
DEFINITION. An element Ke<Z[{], ¢ = exp(2ni/11), is said to be
normalized if
K = —1(mod (1—2¢)2).

10
Clearly K = }'a,{'eZ[{] is normalized if and only if
i=1

10 10
Zai = —1(mod11),  Mia, =0 (mod 11).
=1 =1
We will be particularly interested in those K eZ [£] for which KK = p.
LeMMmA 1. (i) If KeZ[(] is such that KK = p then K possesses a unique
normalized associate K, such that K, K, = P.



02€T
0281 —

099 —

099

02€1 —

0281

0287 —
0281

0261 —
08T

o1

099 —

099

0G€T

02€T —

0261 —

028T —
02€T
0287 -
02€T

0261

0G€T —

099

099 —

0261

08T

0%€T —

0681

0261 —

02€T

0261 -

06T

0261 —

099

099 —

02T —
0881 —
0261 —

0261
02¢T
026T

L

099
099

0261 —

02861

0GET —

0881
02¢1
0861 —
0281 —

0281

0ge
(1134

0€e
099 —
099 —
099 —
0€e

099

099 —
099 —
099
099
099
099
099 —
099 —

“"

088 0%%— | 61— | &L 099
0% — | 0TT— | 86T aL 099 —
oy (44 GoT1 09— 099 099— 099— | 0€€
08e— | 69T | 99T—| 09— 099 099— | 099—
0€€—| 99T 9T —| 09— 099— | 099 099
0y G91 09— 099— | 099 | 099 0€e
86T | &L
0F¥ — | 088 — 09— | 099 099 — 099 - | 08€
0€e co1 ¢OT—| 09— | 099— [ 099 099— 06€ —
G9T— | 99T 09— | 099 099— | 099 068 —
02%— | 088 | 26T—| 2L
G91— | 99T 09— oww.l 099 099 068 —
0ge c91 ¢o1T—| 09— | 099 099 099 08€—
0¥y — | 08%— 09— | 099— | 099 099 0€e
028 | 02%— | 88T —| L
0€e¢ | 86T aL 099 0381 — | 0€€
0%% | 026 | G61— | @L 099 0281 — 099 —
0%%2—| 026 |@8T—| &L 099 - 0261 —
082 — | 0TT— | 861 oL 026T— | 099 —
023 02%— | 28T—| &L 0261 — 099— | 0€€
062 026 | 681T—| @L 0GET 099 068
02— [ 0TT— | 861 oL 0281 099
02%—| 028 | G8T— | BL 099 0z€1
022 02%— | 26T—| &L 099— 0281 099 —
0€g | 861 aL 099— | 03€T 0ge
9—
*f *f i " o1y LH Lh Ly LA %
T 4T14dVL

UOAQ[d I10PIO JO SIAqUINU ITWI0I0[LD Jo I[qe,

022
022
(310 £

OTL=

(118}
0Tt
0T —

011 —
01T
0Lt
0¥y —
0€e
025
ovy—
082 —
01T
0TT
088 —
0¥y —
022
0ge

0Lt
(U181
gg=
<91
ooT

gg—

(1) ) g
01T —
01t
0€€ —
0Tt
01T —
01T~
0Lt
991
99—
0rT
gL —
e
99
QLG —
01T
00—

99

99

66

66

66

66
9% —
99—
99—
99—
99
99—
99—
99—
99

66

66
99—
66
166 —
€6 —
66
99—
66

66

Lr )

96—

9¢
9€
96—
9¢
9€
9€
9¢€
9¢
9€

021+ d021
081+ d0aT
08T + d0zT
021+ dogT
0a1 -+ dogT
021+ d0zg1
031+ d0&T
021+ dozgT
021+ A0zt
021+ dogT
081+ d0gT
021+ d0g1
0%1 -+ d03T
021+ doaT
021+ doz1
0021 — d0z1
0021 — d02T
0021 — d0Z1
0021 — d0z1
0021 — @0ZT
0031 — d0aT
0021 — d021
0031 — d0aT
0021 — d021
0031 — d031
2e—4ad

Z 02¢¥1
A 03¢¥T
X 02¢¥I
A1 02SFT
A 02871
11 025¥1
£ 02STI
S 0%¢vI -
A 02STL
@) 02CTT
o 02471
0 02¢¥1
N 02671
n o0zevl
T 0%SFT
M 02S¥T
[ 0gevl
I 039%1
7 02571
£) 02571
o 028¥T
M 08SVT
 0%9%1
0D 02¢FT
& 02971
gatal

SIOqUIN N
2TuI0}
-0[04&D)




372 P.A. Leonard and K. 8. Williams

(ii) If no one of the integers m, n, m+n is divisible by 11, J.(m, n)
s a normalized element of Z[(] such that Ja(m, n)d (m, n) = p.

(iii) The unique normalized associate K, of K — T Ty Wy T Ty (TESP.,
K = mymymymgmg) 18 K, = J,(1, 1) (resp., K, = J_(1, 2)).

Proof. (i) This result is contained in the work of Dickson ([3],
p. 375).

(i) By (1.5) and (1.7) J,(m,n) is an element of Z[] such that
Jo(my ) (m, n) = p. Now clearly

Sy =i,

r=1

S

80 that J.(m,n) = —p = —1(mod (1—¢)?), proving that J, (m,n) is
normalized.
(iii) This is a result of Kummer (see for example [3], p. 376).

10
Lemma 2. If K = ZaiéieZ[C] 18 normalized and such that KK — P
then el

10
Dita; =0, Nita; =0 (mod 11).
i=1

Proof. As K is normalized we have

(K +1)(K +1) = 0 {mod (1),

giving, as

KK =p =1(mod11~(1—¢)"), K-+EK = —2 (mod (1—¢)Y),
that is
(2.1) D@+ oy _) (& + 1 —2) = 0 (mod (1— ).

Now we set 8 = ¢+ —2 so that
PR L)
0240 —2 =48+ 5,
(240 —2 =98+ 642+ 3,
T —2 = 16842082+ 843 + B,
D+ —2 =256+ 5062 +354° + 104* + £°.
Hence (2.1) becomes

(2.2) Z b;f" = 0 (mod p2),

i=1
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where
by = (@1 + @y0) +4(a3+ag) +9 (a3 + ag) +16 (a, + a;) + 25 (a5 + @),
by = (@y+ @g) + 6 (@5 + ag) +20(a, + a;) + 50 (as + a5),
(2.3) by = (a3+ag) +8(ay+a;) +35(as + ag),
by = (a3+a;) +10(a;+ ag),
by = (a;+ag).

From (2.2) we have b, = 0 (mod ), implying b, = 0 (mod 11), as the
norm of 8 in Z[{] is —11. Hence from (2.3) we have

(2.4) (@) + @y9) + 4(@z + ag) +9(ag+ag) +16(ay + a;) +25 (a5 + a5)
— 0 (mod 11),
which is
10
(2.5) Niza; =0 (mod 11),
i=1

as required. Now (2.5), together with the fact that K is normalized, gives
K = —1 (mod (1—2)?,
so that as above we have '
K+K = —2 (mod (1—2)%),
that is

N (@+ay_) (& -+ —2) = 0 (mod (1—2)),
i=1

(2.6) Vb, = 0 (mod p3).

1=1

Now, as b, = 0 (mod 11 ~p°), (2.6) gives b, = 0 (mod ), implying as
before b, = 0 (mod 11). Hence from (2.3) we have

(2.7) (@ + @) + 6 (a5 + ag) + 20 (ag +a;) + 50 (a; +ag) = 0 (mod 11).
Thus taking (2.4) plus 12 times (2.7) we obtain

(@ + @y4) + 16 (@y + ag) + 81 (ag -+ ag) + 256 (a, + a;) + 625 (a5 + ag)
= 0 (mod 11),

which is
1

<

L4

i*a; = 0 (mod 11),

Il
-

i

as required. This completes the proof of Lemma 2.
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The next lemma gives us information about the solutions of (1.16)-
—(1.22).
LEMMA 3. For any solution (z, ..., #y,) of (1.16)—(1.22) we have

(2.8) Ty + 2y + 27 = 0 (mod 2),

(2.9) Ly + &y + 2y + 2y = 0 (mod 2),
(2.10) 5+ 2s+o; = 0 (mod 2),

(2.11) Ty — x5+ 22, + 22 = 0 (mod 4),
(2.12) ' Xy — 3+ 4wy + 421, = 0 (mod 8),
(2.13) x3—xy = 0 (mod 3),

(2.14) 2y —a, = 0 (mod 5),

(2.15) X + 2@, + 32y + 4wy + 521 = 0 (mod 11).

Proof. Reducing (1.16)—(1.20) modulo 32 we obtain

(2.16) 1247 + a3 + 233 + 1407} + 1022 + 20 (2 + a2 + a2 + 2% + o7,
= 16 (mod 32),

(2.17) 1347+ 5ar + 200; + 42k + 164; + 1642 + 302,25 -+ 8257, + 24w, a5 +
+ 8wawy + 24xy x5+ 8wy, = 0 (mod 32),

(2.18)  13a3 + 293 + 16a; + 1623 + 1622, - 16, 2, - 162, 5 + 22,5 +
+ 8wy x5 + 24235 + 16,2, = 0 (mod 32),

(2.19) 133 + 5a% + 203 + da? + 1642 + 1642, + 161, 2, + 16, 5+
+ 302525 + 1225, 4 282,25 + 20032, + 42, 2; +- 242, 2, = 0 (mod 32),

(2.20) 272+ 303 + 2442 + 2442 - 1642 - 1647, - 240, ©, + 82,53 +
+ 162, @, + 162, x5 + 182,25 + 162,2, + 162,25 = 0 (mod 32).

Taking (2.16) modulo 2 we obtain @, —x; = 0 (mod 2). Using this and
(2.16) taken modulo 4 we obtain

(2.21) 2y — s = 0 (mod 2).

Next taking (2.18) modulo 8 we obtain 5a? -+ 522+ 6x,2, = 0 (mod 8),
which gives
(2.22) Xy — 3 = 0 (mod 4).

Reducing (2.16) modulo 8 we obtain

(2.23) 407 + 25 + Tark + 6] + 22 + 4 (a? + 22 + 22 + 2} +a%y) = 0 (mod 8).
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From (2.22) we have 22+ 722 = 0 (mod 8) and from (2.21) we have 6a}+
+ 242 = 0 (mod 8), so that (2.23) becomes
(2.24) Xy~ B + Ty + X+ Tg + 319 = 0 (mod 2).
Subtracting (2.19) from (2.17) we obtain
(2.25) 1642 + 1642 + 162, 2, + 163, 25 -+ 28@,a, + 280,25 + 200,2, +
+ 202,25 + 162,25 = 0 (mod 32).
Appealing to (2.21) and (2.22) we have
28,1, + 28w, 25 + 20252, + 20032, = 0 (mod 32),
162, x, + 162, 25 - 16z,2; = 1623 (mod 32),
80 that (2.25) gives a5+ +2; = 0 (mod 2), which is (2.10).
Adding (2.18) and (2.20) we obtain
(2.26) @%@} + 3wk + 20} + 2055 + 32, Xy + @1 Ty + Lo W5 + 2005004 + 3205 +
+ 3wy + 22,25 = 0 (mod 4).

Appealing to (2.21) and (2.22) we have
0% + 302 + 2w, 5 = 242 (mod 4),
B2 + 30, Ty - By By + By g + 2058, + 3T, T5 + 3B %5 = 2x; (mod 4),

50 that (2.26) gives @+ a,~+ s+ o, = 0 (mod 2), which is (2.9).
From (2.9), (2.10), (2.21) and (2.24) we have

By + By + Byg = By + B3+ @4+ ¥5+ 210 (Mod 2)
= (w1+w6+w7+ws+x9+wm)+(w5+w6+w7)+(w3+w4+w8+w9)
= 0 (mod 2),

which proves (2.8.)
Adding (2.19) and (2.20) we obtain

22 + 242 + 302 + T2 + 4% + 4wy + 6@, %5 + 20, 5 + 40, @5+
+ Toy @y + 3T @5 + BTy %, + X305 + 62,25 = 0 (mod 8).

Using (2.21) in the form #, = x;+2l, and also (2.22), this congruence
gives
ak + a3+ 312 = 0 (mod 2),
that is,
2, + x5+ 1 = 0’ (mod 2)
or
xy — X5 + 20, + 22 = 0 (mod 4),
which is (2.11).
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Using (2.22) in the form x, = &3+4m, and also (2.21), in (2.18)
we obtain
x5+ afy+m? = 0 (mod 2
that is
Zy + Ty +m = 0 (mod 2),
or
Ty — g+ 4@y + 41y = 0 (mod 8),
which is (2.12).
(2.13) follows by reducing (1.17) modulo 3.
Reducing (1.16)—(1.20) modulo 5 we obtain

(@) + @5) (2, — @,) = @5(2, — %) = (04 + ;) (2, — o) = (4503—,'—2:1‘4—}—%)({101 — &)
= (2®y + @3 + 20, + ;) (0, — ,) = 0 (mod 5).

If 2, —x, = 0 (mod 5) then we have

f

s =Ty =03 =0, =2, =0 (mod 5),

which is a contradiction. This proves (2.14).
Finally from (1.21) and (1.22) we have
(2.27) 3y + 43 + Sy + 625 = 0 (mod 11).

Also by computing 3(1.17)+4(1.18)+(1.19)+5(1.20) modulo 11 we
obtain

(2.28) (5 + 2@ + 324 + 455 + 5214)2 + 325 (3, + 45 + b, + 65)
= 0 (mod 11).

Thus from (2.27) and (2.28) we have (2.15).

This completes the proof of Lemma 3.

The next lemma, which is just stated here, is a result of Dickson.
It relates the factorization p = KK in Z [£] to representability of 1200p
as a sum of squares. For a proof the reader is referred to [3].

10
LeMMA 4. Let K = Y a,5'<Z[], and set
i=1

A — a1a2—r—a2a3+a3a4—f—a4a5+a5a6+a6a7+a7a8+a8a9+a9a10,
4; = Oy Qg+ Gy @y + Uy (5 Gy g ‘5‘0/5“7‘7"“6“3‘,‘a7“9+aaa10+a10“1a
4, = a1a4+aza5+“3a’e+“4“7+“5“s+“6a9+“7a10+“9a1+410“2,
Ay = a145+a2a6+a3a7+a4a8+a5a9+a6a10+a8a1+a9a2—{—a,0a3,

A5 = aya5+a,a, + A3 Qg Gy Qg+ G501+ O, Q) + Ag @y =+ Ay Qg+ Gy @ .
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Then we have KK = p if and only if

(2.29) 1200p = 12(a, -+ Gy -+ G+ Gy + 5+ G + @ + @ + @y + 10)2 -+
+33(a;+ay+as+a,—4a;—4a,+ a; + ag+ ag+ a.0)% +
+5b(ay+as+ ag—3a; —3a; -+ ag+ ag+ a45)*+
+110(a, +as —2a;—2a3 -+ g+ a,)2 +
+330(a; — ay— @y + ay9)% -+
+660{(a; — a14)® + (@2 — a)* + (@3 — ag)® + (a4, — a;)* +

+ (a5 — 46)2}
and

(2.30) A, =45 = Ay = Ay = 4.
3. Solutions of the diophantine system. In this section we provide

the main step in the proof of Theorem 1, by relating factorizations of p
in Z[{] to solutions of (1.16)—(1.22).

-

LEMMA 5. There is a one-to-one correspondence between normalized
elements K eZ[L] satisfying KK =p and solutions - (zy,...,xy) of
(1.16)—(1.22).

10

Proof. Let K = Z a;* be a normalized element of Z[{] satisfying
KK = p. We define lntegers B igimerery 1By HDY

%y = G+ Gy + Q3+ Qg+ G5+ Qg + Q7+ Qg + Gy + Gy,
Ty = @y + Gy + O3+ g — 405 — 46 + @7+ Qg + g + Ay,
Ly = @+ Gy + Q3 — Ay — 34, -+ ag + Ay + Ay,
Ty = @, +a2—2a3-~a8'+ (g Gy,

(3.1) Ty = @y — @y — Gg+ Oy,

Lg = O3 — Qq9,

Note that as K is normalized we have z, = Za = —1 (mod 11). Equation
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(2.29) of Lemma 4 shows that (1.16) holds. Inverting the system (3.1)
we obtain

120a; = 12, + 32, + 525+ 10z, + 302, + 60x;,

120a, = 122, + 3z, + 525+ 102, — 30x; +60z,,

120a; = 122, + 3z, + brs— 202, 4 60x,,

120a, = 12z, + 3z, — 15z, -+ 60x,,
(3.2) 120a; = 12z, —12x, + 602,,,

120a;, = 122, —12x, ' — 6024,

120a, = 12z, + 32, — 15z, — 60x,,

120a;, = 12z, + 32, + 523 — 202, — 6024,

120a, = 12z, + 3w, + 55+ 102, — 3025 — 60a,,

120a,, = 12#, + 3w, + 53 + 102, + 3025 — 602
Substituting these values for a,, ..., a;, into the conditions (2.30)
A —A, =A,—A; =A,— A, =A4,—4, =0

given by Lemma 4, we obtain (1.17)—(1.20). Finally by Lemma 2 we have

10 10
(3.3) - Nita;= Y'ita; = 0 (mod 11),
i=1 i=1
and substituting the values for a,, ..., a;, given by (3.2) into (3.3) we

obtain (1.21) and (1.22).
Conversely let 4 (#,...,2;,,) be a solution of (1.16)—(1.22). By
Lemma 3 we may define integers a,, ..., a;, by

1204a, = 12x, + 3w,+ 5253+ 102, + 3025 + 60z,
12040, — 12, -+ 3, - 5 - 101, — 30; + 60, ,
1204a; = 12z, + 32, + 523 — 202, + 60z,
120ia, = 122, + 3w, — 1525+ 60x,,

(3.4) 1204a; = 122, — 12z, -+ 60x,,,
1204ay = 12z, — 122, — 602,
1204a, = 12z, + 3z, — 152, — 60x,,
120Aay = 122, + 3z, + by — 202, — 6024,
1204ay = 122, + 3wy + by + 102, — 3025 — 602, ,
1204a,, = 122, + 32, + day + 102, + 302; — 6024,

10.
where 2 = +1. Clearly 1)'a; = %,, and since (2, ..., #;,) satisfies (1.16)
i=1



The cyclotomic numbers of order eleven 379

we have #, = +1 (mod 11). Thus we take 2 = —1, if #; =1 (mod 11),
and A = +1, if 2, = —1 (mod 11), so that

. 10
(3.5) Zai — —1 (mod 11).

10
We then set K = Y a,(* so that KeZ[{]. By Lemma 4 we have KK =p,
i=1

1

as (3.4) implies that (2.29) and (2.30) are satisfied. Now from (3.4) we have

10
(3.6) 2 Nia; = wg -+ 2w, + 3ty + 4y + 5y, (mod 11),
=1
so that Lemma 3 gives
10
(3.7) Sm = 0 (mod 11).
i=1

Hence by (3.5) and (3.7) K is a normalized element of Z[(] satisfying
KK = p.

This completes the proof of Lemma 5.

4. Proof of Theorem 1. The integers K of Z[(] such that KK = p
have been described in § 1. Applying to Lemma 1, we let K, = J.(1, 1),
K, =J,(1,2) and K; denote, respectively, the unique normalized as-
sociates of

Ty g Wy T gy~ Ty oy T Mg,  ANA Ty Ty 370577

satistying K;K; = p, i =1,2,3. By Lemma 5, each K; gives rise to
solutions (@4, Fazy - +-, £10;) Of (1.16)—(1.22). The conjugates of each K;
give rise to the 20 solutions given in (1.24). (These solutions are distinct
as the conjugates are distinct.) Thus K,, K, and K; account for 60 solutions
of (1.16)—(1.22).

It remains to consider the conjugates and associates of 7,737,757 5.
As this algebraic integer is left fixed by the automorphism o, of Q(?),

it is an integer of Q(V —11), so that
(4.1) 70y T3 s 5 Ty = 3 (@ + bV —11),

where a and b are integers such that @ =b (mod 2). As 4p = a? 11562,
we have a¢ =2 or 9 (mod 11).
Considering (4.1) and the Gaussian sum

-1
(42) Z(%) = PP DB =Y -1

=1
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we have
10
Ty 3Ty T g = Zcigl?
i=1
where
€1 =0 =€ =0 =0 =3%(b—a), 6 =¢ =0 =¢ =¢,= —3(b+a)
10 10
Now D'e¢; = —B5a, Yic; = 0 (mod 11), so that
i=1 i=1
— My Ty My W5y 18 normalized if a = 2 (mod 11),
(4.3)
+ 7 g My W57y 18 normalized if @ = 9 (mod 11).

The normalized element (4.3) and its conjugate give rise to the 4 solutions.

' :f:(5a'a0’090a07 _b7 b7 _b: _b9 _b); i(5“707070707ba _bab’b’b)g
if a =2 (mod11),

) £
+(—54,0,0,0,0,b, —b,b, b,b); +(—5a,0,0,0,0, —b,b, —b, —b, —b).
if a =9 (mod11).
By Lemma 5 every solution of (1.16)—(1.22) arises in this way S0

the total number of solutions is 60 -4 — 64, and this completes the
proof of Theorem 1.

5. Evaluation of the cyclotomic numbers of order eleven — proof

of Theorem 2. We let (v, ..., o) (resp., (¥, ..., Y1) Where z;, = —1

(mod 11) (resp., y; = —1 (mod 11)), be the solution of (1.16)—(1.22)
10

corresponding to J,(1, 1) (resp., J,(1, 2)) so that J,(1,1) = Y a;C (resp.,
10 =1

Ja(1,2) = Y'a;l’), where the a, are given in terms of the z; by (3.2)

i=1

(resp., the a; are given in terms of the y; by (3.2) modified in the obvious
way). Moreover from (1.9) we have

(5.1) a; = B(i,1)—B(0,1), a; = B(i,2)—B(0,?2).
Now by (1.14) we have

10 10

so that

(5.2) 11B(0,1) =p—2—u,.
Similarly we have

(5.3) 11B(0,2) =p—2—y,.

Then from (5.1), (5.2) and (5.3) we can compute immediately B(z, 1)
and B(i, 2) for i = 0,1,2,...,10 in terms of the », and y;. The values



The cyclotomic numbers of order eleven 381

of B(0,0) and B(1,0) follow immediately from (1.12). These 24 values
of the B(i, j) enable us to calculate all the Dickson—-Hurwitz sums B (4, j)
in view of (1.11) and (1.13). Using these values in (1.15) we obtain the
cyclotomic numbers of order 11 as given in Table 1.

6. Evaluation of solutions in terms of Jacobsthal-Whiteman sums.
In this section we follow ideas of Whiteman [12], [16] in order to give
explicit formulae for the solutions (z, ..., #5,) and (¥, ..., ¥;,) of (1.16)—
(1.22) in terms of which the ecyclotomic numbers of order eleven have
been given. In order to do this we need a sum considered by Whiteman
which generalizes the familar Jacobsthal sum. We define the Jacobsthal-
Whiteman sum ¢"(a) of order 11 as follows: for any positive integer n
and any integer a we let N,(a) denote the number of solutions y,0 <y

< p-—1, for which y"*'+y" = a (mod p) and set

p—1

(6.1) g"(a) = N N,(daa")—(p+1),

=0

where 4 denotes the inverse of 4 modulo p. When n =1, ¢'(a) = ¢;(a) —
the familar Jacobsthal sum, as in this case

1+ 4b
M) = 1+(=)
p
so that
p—1 p—-1 p—1
1+ aztt o\ 1+¢w‘cu) (%)(m11+a)
e ] et R R s B ek Becast [P, Y — gn(a).
(p);(p);(p)(p ;p P Heid)

Whiteman [16] has noted that the number of solutions (z, y) of the con-
gruence
Yyt = 21" (mod p) (v fixed; 0 < x,y <p—1)

is equal to 2--11B(v, n) so that

. »—1-
2+11B(v,n) = 3 N,(¢"a") = p+1+g¢"(4g")
=0
giving
(6.2) 11B(v, n) = ¢"(4¢") +p—1.

Taking » = 1,2 and » = 0,1,...,10 in (6.2) and using (3.1) and (5.1)
we obtain the expressions given in (1.25).

7. Example. We take p = 23. The ¢(22) = 10 primitive roots (mod 23)
are ¢ = 5, 7, 10, 11, 14, 15, 17, 19, 20, 21. We will just determine the

4 — Acta Arithmetica XXVI.4
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cyclotomic numbers of order 11 when g = 5. We first compute the number
of solutions of 22+ = a and #® -+ 22 = a (mod 23). We obtain

0/1/23 4/5 6 7 8 9100 12‘13‘14%15‘16“7\18}19;20‘21"224
| | | | | | | 1

) {2!0‘2‘210}0)212‘0;0{21o*2 0\0‘0{0'1{2"2[2\2
S A NS TR O T e | L | | O S el ] [ !

1 1’3‘0!0:05131‘1‘2;

| Ny |2]2]1

Using the above values and (6.1) we obtain the values of ¢'(4¢”) and
@*(49"), for ¢ =5 and v = 0,1, ..., 10, as given below

P87 49 |74 7 (49) ¢ (49Y) o (46°) o (49°)] 91 (497) g (49%)| @) (49°) g} (4g™)
— 1 | :
—22 e 0o o ‘ 22 | -2 1 0 0, 1"=%
@*(4) Etpz(4g) 7 (492)\ 7 (49%) ¢ (49%) 97 (40°)| 9% (49°) ¢*(497) 42 (49%)| 2 (46°)|p2(4910)
T 22 0 | —11| —22 | —22| 11 | —11 |

From (1.25) we find that the solutions (xy, @,, ..., #,,) and (y;, ¥, S )

are given by

|
Zg |

—3/ 0 |—4/2|2|0|-1f4¢] —12‘?‘—_1

_'ﬁ}'$5’ws§$7‘xijslw1o‘ Y1 5?!2:?/3?3/4,%]%

1| va 90 1

G =
|

1&2

‘—1‘2 4

=

Then from Table 1 we obtain the cyclotomic numbers as given below:

|

0

A

bel[\.\*!O‘P!Q
j=="x'} | L |

R}s

T’U‘V

B{GlD\E\F’G}HlIIJ!K
ez =% | | | ‘

0

w|x

F

Z

00

0

|0

010000000 0jofof1/ojo|1|0|0|o[1] |
| | |

(1]
(2]
(3]

[4]
[5]

(6]

(7]

These values are easily checked by direct calculation.
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