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RELATIVE INTEGRAL BASES FOR QUARTIC
FIELDS OVER QUADRATIC SUBFIELDS

B. K. SPEARMAN (Kelowna) and K. S. WILLIAMS* (Ottawa)

Let L be a quartic number field with quadratic subfield K = Q(\/E) ,

where ) denotes the rational number field. Then L = @ (\/E, va+ b\/E),

where a + by/c is not a square in Q(+/c) and where a, b, and ¢ may be taken
to be integers with both ¢ and the greatest common divisor (a,b) squarefree.
In [6] (see also [5]) the discriminant d(L), as well as an integral basis for L
were obtained explicitly in terms of a,b,c. Four cases naturally arose: (A) ¢
= 2 (mod 4), (B) ¢ = 3 (mod 4), (C) ¢ =5 (mod 8), and (D) ¢ =1 (mod 8).
Each of these cases was subdivided into a number of subcases depending
upon congruences involving a,b and ¢. We refer the reader to [6] (or [5]) for
details.

In this paper we determine the relative discriminant d(L/K) (Theorem
1), as well as a necessary and sufficient condition for L to have a relative
integral basis (RIB) over K and an explicit relative integral basis when it
exists (Theorem 2). Part of Theorem 2 is a special case of a result of Artin
[1]. Theorem 2 extends the results of [2], [3], [4], [7], [8], [9], [10], [11], [12},
[13] to an arbitrary quartic field possessing a quadratic subfield.

THEOREM 1. Let p = a+ by/c, where a+ by/c is not a square in K
= Q(1/c) and a,b,c are integers with (a,b) and c squarefree. Set pOx = RS?,
where R and S are integral ideals of Ox with R squarefree. Then the relative
discriminant d(L/K) is given as follows:

in cases Al, A5, B2, B5, C2, C7, D3, D16, D20

d(L/K) = R,
in cases A2, A6, B3, B6
d(L/K) = 2R;

in cases A3, A4, A7, A8, B1, B4, B7, B8, C1, C3, C4, C5, C6, C8,
D4, D5, D6, D8, D10, D11, D12, D13, D19, D23, D26, D27

d(L/K) = 4R;
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in cases D1, D9, D15, D17, D22, D24

d(L/K) = <2,§ (14 \/E)>2R;

in cases D2, D7, D14, D18, D21, D25

d(L/K) = <2% (1- \/E)>2 R.

In each case d(L/K) = T*R for some integral ideal T

THEOREM 2. L =K (\/m) has a relative integral basis over K
= Q(V/c) if and only if :
§=T(v)
for some y(£0) € K.

If S = T(y), where 7(# 0) € K, then a relative integral basis for L over
K is {1,k}, where k is given in the table below.

K cases
g A3, A4, A7, A8, B1, B4, B, BS,
¥ C1, C3, C4, C5, C6, C8, D4, D5, D6, D8,
7 D10, D11, D12, D13, D19, D23, D26, D27
7 J;‘/ﬁ Al*, A5*, B2=, B5*, C2f, D3, D16, D20
Y
et Vi A2, A6, B2, B5*
2y
THIWErVE | aie A5~ B3. B6
27 bl M y
2
T+ 7*2‘? vE | D1, D9, D15, D17, D22, D24
- 2
Y +7:1/76+ vE | D2, D7, D14, D18, D21, D25
Pra et 2VE | oot or
‘V:. 47 ’
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* indicates ' = 1 (mod 4) where p/v? = a’ + b'\/c

** indicates a’ = 3 (mod 4) where u/v2 = a' + b'\/c
t indicates ' = b’ = 0 (mod 2) where u/y? = (o’ +b'\/c) /2
i indicates a’' = b’ = 1 (mod 2) where p/y? = (d’ +b'\/c) /2

Proor or THEOREM 1. Let P be a prime ideal of Og. Define m, by
P7p||uOk and w, by P¥p||d(L/K).
If P{20g, as pOg = RS? with R squarefree, we have

PR & m, odd
Sw, =1 (by [5, Corollary 1 (iii)])
< P||ld(L/K).
If P|20k the value of w, is given in [6 (or 5), Tables A, B, C, D].
Combining these results, we obtain the assertion of Theorem 1. O

Proor or THEOREM 2. Suppose L has a relative integral basis over K.
This basis may be taken as {1,0}, where § € Og. We express § in the form
0 = a + 3,/it, where a, 3 € K. Then we have

2

Ok =d(L/K),

1 4
1 ¢

and so, by Theorem 1, (28)2uOx = T?R. As uOg = S?R we deduce (26)§
=T, so that § = T'(v), for some nonzero v € K.
Suppose now that 5 = T'{y) for some nonzero v € K. Then

1
d(L/K)=RT? = ZRS* = Loy
v v
Let a,6 € K. Then

{1,a+ B+/p} is a RIB for L/ K

2
& a+ fBy/p € 0 and '} Ztg\\;_g Ok =d(L/K)

o o+ ﬁ\/ﬁ € 0y, and 4ﬁ2u01{ = %OK

& a+ By/u € Op and 43%y% = unit of Og
< a+ Byp € O and 287y = unit of Ok

3
& a4+ a\/ﬁ € Op, for some unit ¢ of Ok.
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We treat cases on p. In each of the cases A1-D27 specified in [6] (or [5]) we
give a value of a € K for which o + %ﬁ € Or.

Cases A3, A4, A7, A8, B1, B4, B7, B8, C1, C3, C4, C5, C6, C8, D4,
D5, D6, D8, D10, D11, D12, D13, D19, D23, D26, D27. In these cases T
= 40k, by Theorem 1, so #OK = R, and thus Z’fy—z € Ok. Hence \2/—5 is an
algebraic integer in L. Thus we can choose o = 0.

Cases D1, D9, D15, D17, D22, D24. In these cases T' = P;. From Table
D of [6] (or [5]) we see that P, divides p to an even exponent so that P; | R.
Further

K 1 2 _ 2
130K = RS* = kP,
so that /7% € Og. If p/y* = = + y\/c, where z and y are integers, then 2
and y are of opposite parity as 21 pu/y%. Thus N(u/y?%) = z? — cy? is odd,
contradicting N(p/7?)Ox = 4RR'. Hence u/v? = 1(z + y\/c), where ¢ and

y are odd integers. We set u/ = 4u/vy% = 2z 4 2y/c. Clearly P}||y’. From
the values of m; in Table D of [6] (or [5]), we deduce that

P}y, in cases D1, D17, D22,
P2lli’, in cases D9, D15, D24.

Hence, for p in cases D1, D9, D15, D17, D22, D24, the corresponding cases
for p’ are D17, D24, D24, D17, D17, D24, and, from Table D’ of [6] (or Table

(viii) of [5]), we may choose a = 1—‘?& as

L+ye 1 _ 1 -
. +£\/ﬁ—4(1+\/5+\/;7)EOL
by cases D17 and D24 of Table D’ of [6] (or Table (viii) of [5]).

Cases D2, D7,D14, D18, D21, D25. These cases can be treated in exactly
the same way as the preceding cases with the roles of P; and P, interchanged.

Cases A1, A5, B2, B5, CQT, D3, D16, D20. In these cases T = Og. From
Tables A-D of [6] (or [5]) we see that R and 20 are relatively prime.

Further

1

£ ok = RS =R,

Y 7

so that u/v? € Ok. We claim that u/v? = z 4 y+/c, where z and y are inte-
gers. This is automatically true for the cases A1, A5, B2, B5 and C2t. For
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D3, D16, D20 assume that u/y? = ;(z + y/c), where z and y are odd in-
tegers. Set a’ + b'\/c = 4p/~?, so that a’, b must fall into one of the cases
in Table D of [6] (or [5]). However this is not the case as the corresponding
values of r,my, my, wy, wy are 4, 2, 2, 0, 0 respectively. Set p/ = p/y? ==z
+ y/c, where z and y are integers. As y’'Ox = R the corresponding value
of r for u’ is 0, and, as d(L/K) = R, we see that for u in cases Al, A5, B2,
B5, C2Jf, D3, D16, D20 the corresponding cases for u' are cases Al, Al, B2,
B2, C2, D3, D3, D4. Thus, by Tables A’-D’ of {6] (or Table (viii) of [5]), we
may choose a = 1 as

2
1 1 1
3tavi=g (e Vi) eor

1+

except in the cases A1**, A5** when we must choose o = ~5X= and in cases

B2**, B5™ when we choose a = 3./c.

Cases A2, A6. In these cases T'= P. From Table A of [6] (or [5]) we see
that P divides p to an even power so that P { R. Further

£ ok —7—352 RP?,

so that u/v% € Ok. Set p = u/v?%. Then p’ satisfies the conditions of case

A6. Thus we may choose a = é ¢ as

%ﬁ+ \/“—‘[h/‘

in case A6.

Cases B3, B6. In these cases T = P. From Table B of [6] (or [5]) we see
that P divides p to an even exponent so that P+ R. Further

2Ok = —RS? = RP?,
72

v
so that u/v% € Og. Set u’ = u/v%. Then p’ satisfies the conditions of case
B6. Thus we may choose a = 1+2 < as

1-|-\[

1 /
b ym LRV

in case B6.
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Cases €2}, C7. In these cases T = Og. From Table C of [6] (or [5]) we
see that P divides u to an even exponent so that P { R. Further

1
;‘—20;{ - ﬁRbﬂ = R,

so that u/y? € Ox. We now show that in case C7 we have p/v2 = i(z
+ y4/c), where z and y are odd integers. From [6 (or 5), Table C] we see that
22|l so that 2||S = (7). Set v = 23, where 8 € Ok. Then, as p/v% € O
and p/B?% = 4u/+?, we have p/B% = 2’ + y'\/¢, where z’ and y’ are integers.
The values of r and w are still 4 and 0 respectively for p/3? in place of
p. Thus p/B3? falls under case C7 and so z' = ¢’ = 2 (mod 4). Hence p/y?
= pf4p? = %@ is of the asserted form. In both cases C2} and C7 we
have u' = 4u/y? = 2a’ + 2b'\/c, where ¢’ = b’ = 1 (mod 2), and p' falls into
case C7. Thus we may choose o = §>_+7\@ as

b+ 1

! !
b+\/i+\/;760L

in case C7. 0O
REMARK. We remark that in case C2 both the possibilities a’ = b’
=0 (mod 2) and ¢’ = ¥ = 1 (mod 2) occur, where u/y2 = (a' + b'\/c)/2.

If we choose a = —17, b = 18‘, ¢ = 5 then we can take v = %( —14 3\/5)
—174+18v5 _ =143V/5
= p)

(3(-14av8) )

(see Example 2 below) and pu/v2 = soa = -1, b

=3.
On the other hand if we choose a = —1, b =2, ¢ = 5 then
(1) = <—1 + 2\/5> — RS?
gives
R= <—1+2\/5>, S = (1).
By The(;)rem 1 T = (1) so we can take v = 1. Thus
p/yi=-14+2V5 so o =-2,0 =4.
We conclude with two examples. |
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ExaMmpLe 1. We consider L = @ ( 10 4+ \/10). This is Example 2 of
[12]. The quadratic subfield of L is K = Q{+/10). Herea = 10,b=1, ¢ = 10
so we are in case A4. Moreover (1) = {10+ +/10) = RS?, where R = (/10)
and S = (3,1++/10). By Theorem 1 we have d(L/K)=4R so T = (2). As
(3,14 V/10) is not a principal ideal, § # T{y) for any v(# 0) € K. Hence,
by Theorem 2, L does not have a RIB over K.

EXAMPLE 2. We consider L = () (\/ 17+ 18\/5). The quadratic sub-

field of L is K = Q(v/5). Here a= —17, b= 18, ¢ =5 so we are in case
C2. O is a PID so, by Theorem 2, L has a RIB over K. As py=-17

3
+18V5 = (%) we can take R =5 = <:1i2——3‘/g> By Theorem 1 we

have d(L/K)= R so T = (1). Hence we can take y = 2( — 1+ 3+/5) and a
RIB for L over K is {1,x}, where

3v+9v5+2/E 34+5 1 [-143V5
K= = + oA —.
4y 4 2 2
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