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EVALUATION OF COMPLETE ELLIPTIC INTEGRALS 
OF THE FIRST KIND AT SINGULAR MODULI 

H a b i b  Muzaffar  and Kenneth S. Wil l iams 

Abstract. The complete elliptic integral of the first kind K ( k )  is defined for 
O < k < l b y  

The real number k  is called the modulus of the elliptic integral. The  comple- 
mentary modulus is k1 = ( 1  - k 2 ) :  (0 < k1 < 1). Let X be a positive integer. 
The equation 

K ( k l )  = A K ( k )  

defines a unique real number k ( X )  (0 < k ( X )  < 1) called the singular modulus 
of K ( k ) .  Let H ( D )  denote the form class group of discriminant D .  Let d  be 
the discriminant -4X. Using some recent results of the authors on values of  
the Dedekind eta function at quadratic irrationalities, a formula is given for 
the singular modulus k ( X )  in terms of quantities depending upon H ( 4 d )  if 
X - 0 (mod 2); H ( d )  and H ( 4 d )  if X = 1 (mod 4); H ( d / 4 )  and H ( 4 d )  if 
X r 3 (mod 4).  Similarly a formula is given for the complete elliptic integral 
K[A] := K ( k ( X ) )  in terms of quantities depending upon H ( d )  and H ( 4 d )  if 
X r 0 (mod 2); H ( d )  if X = 1  (mod 4);  H ( d / 4 )  and H ( d )  if X r 3 (mod 4). 
As an example the complete elliptic integral ~ [ m ]  is determined explicitly 
in terms of gamma values. 

Let  k E IR be s u c h  tha t  
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The complete elliptic integral K ( k )  of the first kind is defined by 

Clearly 
7r 

lim K ( k )  = -, lim K ( k )  = +m. 
k i O +  2 k i l -  

The quantity k is called the modulus of the elliptic integral K ( k ) .  The complemen- 
tary modulus kt  is defined by 

(1.3) k l : =  J 1  - k 2 .  

From (1.1) and (1.3) we see that 

(1.4) 0 < k 1 < 1 .  

The complete elliptic integral K ( k l )  of modulus k1 is denoted by K1(k)  so that 

and 

7T 
lim K 1 ( k )  = +m, lim K1(k)  = -. 

k i O +  k i l -  2 

Let X E N. As k increases from 0 to 1, the function K 1 ( k ) / K ( k )  decreases 
from +m to 0. Hence there is a unique modulus k = k ( X )  with 0 < k < 1 such 
that 

The real number k ( X )  is called the singular modulus corresponding to A. The value 
of the complete elliptic integral K ( k )  of the first kind at the singular modulus 
k = k ( X )  is denoted by 

(1 K[A] := K(k(X) ) .  

The first five singular moduli are 
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see for example [ I ,  p. 1391. The values of K[A] for X = 1 , 2 , .  . . ,16 are given 
in [ I ,  Table 9.1, p. 2981. Other values can be found scattered in the literature. For 
example in [2, p. 2771 the values 

are given, where r ( x )  is the gamma function and (a) is the Kronecker symbol. 

The values of k(25) and K[&%] are given in [5, p. 2591. 
Let H ( D )  denote the form class group of discriminant D. Let d be the discrim- 

inant -4X. Using some recent results of the authors on values of the Dedekind eta 
function at quadratic irrationalities, a formula is given for the singular modulus k(X) 
in terms of quantities depending upon H(4d)  if X = 0 (mod 2); H ( d )  and H(4d)  if 
X r 1 (mod 4); H(d /4 )  and H(4d)  if X r 3 (mod 4), see Theorem 1 in Section 4. 
Similarly a formula is given for the complete elliptic integral ~ [ d ]  := K(k(X)) 
in terms of quantities depending upon H ( d )  and H(4d)  if X r 0 (mod 2); H ( d )  
if X r 1 (mod 4); H(d /4 )  and H ( d )  if X = 3 (mod 4), see Theorem 1 in Section 
4. Zucker [5, p. 2581 has determined but not published the values of K[A] for 
X = 17, 18, 19 and 20, so as an example we determine explicitly the complete 
elliptic integral ~ [ m ]  in terms of gamma values, see Theorem 2 in Section 5. 
Our method is different from that of Zucker. 

Let X E N and set 

(2.1) q = e  
-,fi 

so that 0 < q < 1. We define 
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Since 
00 OC, 

we have 
OC, 

Q o Q I Q z Q ~  = n ( 1 -  qZn) = Qo, 
n=l 

so that 

Jacobi [3] [4, p. 1471 has shown that 

He has also shown that the singular modulus k  = k ( X ) ,  the complementary singular 
modulus k t ( X ) ,  and the complete elliptic integral ~ [ f i ]  = K ( k ( X ) )  are given by 

and 

see [3] [4, p. 1461. Next we recall that the Dedekind eta function ~ ( z )  is defined 
by 

03 

(2.1 1) q ( z )  := en'z/12 n ( 1  - e2r 'mz ) ,  z E @, h ( z )  > 0, 
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and that Weber's functions f  ( z ) ,  f l ( z )  and f 2 ( z )  are defined in terms of the 
Dedekind eta function by 

see [9, p. 1 141. It is convenient to set 

f o ( 4  := f (2) 

so that f j ( z )  is defined for j = 0 ' 1 ' 2 .  From (2.1)-(2.5) and (2.1 I), we deduce that 

(2.15) q(-) = q 1 / 1 2 ~ o ,  

(2.1 8) xi124 1/24 
( ( 1  + 1 )  = e q  QoQ2. 

From (2.12)-(2.18) we obtain 

(2.19) Qo = q - 1 1 1 2 q ( G ) ,  

(2.22) Q3 = q1I2* f l  (a). 
Then, from ( 2 4 ,  (2.7), (2.20), (2.21) and (2.22), we obtain 

(2.23) f o ( a ) f l ( G > f 2 ( J - - T T )  = h 

and 
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see [9, p, 1141. Then, from (2 .8 ) ,  (2.10) and (2.19) - (2 .23) ,  we obtain k ( X )  and 
~ [ d ]  in terms of A, namely, 

and 

Recent results of Muzaffar and Williams [6] give the values of q( f l ) ,  f o ( a ) ,  
f l ( f l )  and f 2 ( f l )  for all X E N, see Section 3. Using these values in (2.25) 
and (2.26), we obtain the singular modulus k ( X )  and the complete elliptic integral 
of the first kind K [A] in Section 4. 

3 .  EVALUATION OF q ( a ) ,  f o ( f l ) ,  f i  (a) and f 2  (a) 
Let d  be an integer satisfying 

Let f  be the largest positive integer such that 

(3.2) f 2  I d ,  d / f 2  G 0 or 1 (mod 4). 

We set A = d l  f  E Z so that 

For a prime p, the nonnegative integer up(  f )  is defined by p v ~ ( f )  1 f ,  p u ~ ( f ) - i - i  f f .  
We set 

where (%) is the Legendre symbol modulo p. The quantity ap(A,  f )  is used in 

Proposition 1 below. 
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The positive-definite, primitive, integral, binary quadratic form ax2 + bxy + cy2 
is denoted by ( a ,  b, c). Its discriminant is the quantity d  = b2 - 4ac, which satisfies 
(3.1). The class of the form ( a ,  b, c )  is 

where 

The group of classes of positive-definite, primitive, integral, binary quadratic forms 
of discriminant d  under Gaussian composition is denoted by H  ( d ) .  H  ( d )  is a finite 
abelian group. We denote its order by h(d) .  The identity I of the group H ( d )  is 
the principal class 

[ I ,  0 ,  -dl41 , if d  = 0  (mod 4) ,  
(3.6) I = {  

[1,1,  ( 1  - d ) / 4 ] ,  if d  = 1  (mod 4). 

The inverse of the class K  = [a, b, c] E H ( d )  is the class K - l  = [a,  -b, c] E 

H ( d ) .  If p  is a prime with (%) = 1, we let hl and h2 be the solutions of 

h2 - d  (mod 4p),  0  5 h  < 2p, with hl < h2. The class K p  of H ( d )  is defined by 

Then 
h2 - d  

p, - h l w ]  = [p, h2, y] , 
4 ~  

as hl + h2 = 2p. If p  is a prime with (z) = 0, p  { f, the class K p  of H  ( d )  is 

defined by 

b, 0 ,  - d / 4 ~ l ,  if p  > 2, d  - O ( m o d 4 ) ,  

[p, p, (p2 - d) /4p] ,  if p  > 2,  d  E 1  (mod 4 ) ,  

[2 ,0 ,  -d/811 if p  = 2, d  - 8 ( m o d 1 6 ) ,  

[2 ,2 ,  ( 4  - d ) / 8 ] ,  if p  = 2, d  -= 12 (mod 16), 

so that K p  = K;'. We do not define K p  for any other primes p. 
As H ( d )  is a finite abelian group, there exist positive integers h l ,  h2 ,  . . . , h ,  

and generators All A2 ,  . . . , A,  E H ( d )  such that 

hl h2 . . . h,  = h ( d )  , 1  < hl ( h2 I . . . I h,, ord(A;) = hi (i = 1, . . . , v) , 
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and, for each K  E H(d) ,  there exist unique integers k l ,  . . . , k, with 

We fix once and for all the generators Al , . . . , A, of the group H  (d ) .  For j = 

1, . . .  , v w e s e t  
indAj ( K )  := k j ,  

and for K ,  L  E H ( d ) ,  we define x : H  ( d )  x H(d)  - Oh, (group of h, th roots 
of unity) by 

" indAj ( K )  indA3 ( L )  
27ri T 

The function x has the properties 

x ( K ,  L )  = x ( L ,  K ) ,  for all K ,  L  E H(d) ,  

x ( K ,  I )  = 1 ,  for all K  E H(d) ,  

x ( K L ,  hf) = x ( K ,  M ) x ( L ,  M ) ,  for all K ,  L, M  E H(d) ,  

x ( K T ,  LS)  = x ( K ,  L)", for all K ,  L  E H(d)  and all r ,  s E Z, 

see [6, Lemma 6.21. It is known that for K ( #  I )  E H(d)  the limit 

exists and is a nonzero real number such that j ( K ,  d )  = j ( K - l ,  d ) .  see [6, Lemma 
7.61. For n E N and L  E H(d)  we define 

HL(n)  := card{h 1 0 5 h < 2n, h2 = d (mod 4n),  n, h, - = L) .  [ h2q.nd] 
The properties of HL(n)  are developed in [6, Section 51. Then, for n E N and 
K  E H(d) ,  we set 

Properties of Y K ( n )  are given in [6, Section 71. Further, for a prime p and a class 
K(#  I )  E H(d) ,  we set 
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Next, for K ( #  I) E H ( d ) ,  we set 

where the products are over all primes p satisfying the stated conditions. Finally, 
for K E H ( d ) ,  we define 

see [6, Section 91, where 

(3.11) w ( d ) = 6 , 4 o r 2 a c c o r d i n g a s d = - 3 , d = - 4 o r d < - 4 ,  

and 

The following evaluation of r l ( f l )  follows immediately from [6, Theorem I], 
as rl(m) is real and positive for X E N. 

Proposition 1. Let X E N. Let d  = -4X = Af2, where A and f are deJined 
in (3.2)  and (3.3). Let K = [1,0,  A] E H ( d ) .  Then 

where crp(A, f )  is deJined in (3.4) and (&) is the Kronecker symbol. 

The following result is Theorem 3 of [6]. 

Proposition 2. Let X E N .  Let d  = -4X. Let K  = [ I ,  0 ,  A] 6 H ( d ) .  
(a) X - 0  ( m o d 4 ) .  Set 

Mo = [4,4,X+ I.] E H(4d) ,  

M2 = [1,0,4X] E H(4d) .  

Let X = 4Op, where CY is a positive integer and p s 1,2 or 3  (mod 4). 
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(i) p -- 1 or 2 (mod 4 )  (so that A is even and v2( f )  = a) .  We have 

(ii) p E 3(mod4)  (so that A E - p ( m o d 8 )  and v 2 ( f )  = a + 1) .  I f p  = 
3 (mod 8 ) ,  we have 

fo(J-X) = 2~ e ~ ( ~ 9 d ) - ~ ( ~ ~ 1 ' d )  

f l  (G) = 2*e~(K,d)-~("l.d14) 

f2(-) = 2 ~ e ~ ( K . d ) - E ( ~ 2 , 4 d ) .  

I f  p E 7 (mod 8) ,  we have 

f o ( a )  = eE(K,d)-E(Mo,4d) 7 

f l  (a) = h e E ( K , d ) - E ( M 1  ,d/4) 

f 2  (a) = eE(K.d)-E(M2,4d) 

(b) X r 1 (mod 4 )  (so that A is even and f is odd). Set 

Mi = [4,O, A] E H(4d) ,  

M, = [1 ,  O,4A] E H (4d) .  

Then 
fo (G) = 21/4eE(K)d)-E(M~Td) 

f l  (J-X) = 21/8eE(K,d)-E('f~ ,4d) 

f2  (a) = 21/8eE(K)d)-E(M2>4d) 

(c)  X = 2 (mod 4 )  (so that A is even and f is odd). Set 

Mo = [4 ,4 ,  X + 1] E H ( 4 d ) ,  
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Then 

fo(-) = 2 1/8eE(K,d)-E(Mo,4d) 3 

f l  ( a )  = 2 1 / 4 e E ( K , d ) - E ( M i d )  

f2(J-x) = 211'eE(K,d)-E(M~,4d) .  

(d) X - 3 ( m o d  4 )  (so that X = -A  ( m o d  8 )  and f  = 2 ( m o d  4 ) ) .  Set 

Then, for X - 3 ( m o d  8 ) ,  we have 

and, for X - 7 ( m o d  8 ) ,  we have 

4. FORMULAE FOR k(X) AND ~ [ a ]  

From ( 2 . 2 5 ) ,  ( 2 . 2 6 ) ,  Proposition 1 and Proposition 2 ,  we obtain the main result 
of this paper, namely, the formulae for the singular modulus k ( X )  and the complete 
elliptic integral of the first kind K[A] at the singular modulus valid for every 
X E N. 

Theorem 1. Let X E N.  Let d = -4X. Let K = [ l ,  0 ,  A] E H ( d ) .  
(a) X = 0 ( m o d 4 ) .  Set 

Then 
k ( X )  = e 4(E(Mo,4d)-E(M2,4d)) 

Let X = 4 a p ,  where CY is a positive integer and /I - 1 , 2  or 3 ( m o d  4 ) .  Then 
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where 
1 5  

2"+1 2 '  if p = 1 or 2 (mod 4), 

1 5 
p =  if p = 3 (mod 8), 

3 . 2 "  2 '  

5 -- 
2 

if p = 7 (mod 8), 

(b) = 1 (mod 4). Set 

Then 
k ( ~ )  = 2-1 /2e4(E(h! '0 ,d) -E(Mz,4d) )  

and 

(c) X G 2 (mod4) .  Set 

Then 
k(X) = e 4 ( E ( M 0 , 4 d ) - E ( M 2 , 4 d ) )  

and 

(d) X = 3 (mod 4). Set 

Then, for X = 3 (mod 8), we have 

k ( ~ )  = 2-le4(E(M~,d/4)-E(M2,4d)) 
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and 

and, for X =- 7 (mod 8), we have 

k ( ~ )  = 2-2e"E(hfo,d/4)-E(M2,4d)) 

and 

In this section we use Theorem 1 to evaluate the complete elliptic integral of 
the first kind ~ [ f l ] .  Thus X = 17, d = -4X = -68, A = -68 and f = 1 in 
the notation of Sections 3 and 4. The group H(-68) of classes of positive-definite, 
primitive, integral binary quadratic forms of discriminant -68 under composition is 

where 

In order to determine ~ [ m ]  explicitly using Theorem 1, we must determine 
E ( I ,  -68) and E ( A ~ ,  -68) (see Lemma 14). This requires finding j(Am, -68) 
(m = 1 ,2 ,3 )  (see Lemma 13). To compute j(Am, -68) (m = 1,2 ,3)  from (3.7) 

we must determine those primes p satisfying ($) = (5)  = 1 for which K, = I 

and those for which K, = A2. This depends upon whetherp is of the form x2+ 1 7y2 
for integers x and y or of the form 2x2 + 2xy + 9y2 for integers x and y. By class 
field theory the former occurs if and only if the quartic polynomial x4 + x2 + 22 + 1 
is the product of four linear factors (mod p). This leads us to consider the arithmetic 
of the field K  = Q(8), where I9 is a root of x4 + x2 + 22 + 1. 

Let f (x) be the irreducible quartic polynomial given by 
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The discriminant of f (x) is 272 = 24 . 17 and its Galois group is D8 (the dihedral 
group of order 8) [8, p. 4411. The four roots of f (x) are 

1 
where z5 denotes the principal value of the square root of the complex number z .  
Let 

and set 

so that K is the totally complex quartic field Q((-1 + 4i);). Thus the number 
of real embeddings of K is rl = 0 and the number of imaginary embeddings is 
2r2 = 4. The ring of integers of K is 

see [8, p. 4411. As K is monogenic, its discriminant d (K)  = disc(f (x)) = 272. 
It is known that OK has classnumber hK = 1 [8, p. 4351 so that it is a principal 
ideal domain. As rl + r 2  - 1 = 0 + 2 - 1 = 1 we know by Dirichlet's unit theorem 
that OK has a single fundamental unit. This unit can be taken to be 8 [8, p. 4411. 
The regulator 

7 19 , 

R ( K )  = 2  log 101 =log l z  + '-:+ 
- m A m - , .  

see [8, p. 4411. The quartic field K contains a unique subfield (# 0, K), namely, 
Q(i). The only roots of unity in OK are f 1 and f i. Thus the number of roots of 
unity in OK is w(K) = 4. 

We now give the factorization of f (x) modulo a prime p. We use the notation 
(m) to denote a monic irreducible polynomial of degree m with integer coefficients. 
Thus g(x) - (2)(2) (mod p) means that g(x) is the product of two distinct monic 
irreducible quadratic polynomials modulo p and h(x) - (2)' means that h(x) is 
the square of a monic irreducible quadratic polynomial modulo p. From class field 
theory or indeed by elementary arguments one can show that the factorization of 
f (x) (mod p), where p is a prime # 2,17, is given as follows: 
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If 

($) = (5) = 1 and p = u2 + 17v2 for some integers u and v 

then 

f(x) = (1)(1)(1)(1) (mod P). 

(:) = (5) = 1 and p = 2u2 + 2uv + gv2 for some integers u and v 

then 

If 

then 

f (4 = (2) (2) (mod PI. 

then 

f(x) = (1)(1)(2) (mod P I .  

then 

f (4 - (4) (mod PI. 
For p = 2 

f (x) - (2)2 (mod 2) 

and for p = 17 

f (x) - (1) (1) (mod 17). 

Using these results, a standard algebraic number theoretic argument gives the fac- 
torization of the principal ideal p O K  into prime ideals in OK, where p is a prime. 

Lemma 1. Let p be a prime # 2,17. 
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($) = (;) = 1 and p = x2 + for some integers 3: and y 

then 

p 0 ~  = PQRS, N ( P )  = N ( Q ) =  N ( R )  = N ( S ) = p .  

where P, Q, R, S  are distinct prime ideals of OK 

(ii) If 

(2) = (;) = 1 and p = 2x2 + 2xy + g y 2  for some integers x  and y  

then 

POK = PQ, N ( P )  = N ( Q )  = p2, 

where P and Q  are distinct prime ideals oj'OK 

then 

pOK = PQ, N ( P )  = N  ( Q )  = p2,  

where P  and Q  are distinct prime ideals of OK.  

(iv) If 

then 

~ O K  = PQR, N ( P )  = N ( Q )  = p,  N ( R )  = p2, 

where P, Q  and R  are distinct prime ideals of OK.  

then 
pOK=P,  N ( P ) = p 4 ,  

where P  is a prime ideal. 

(vi) 2OK = P2, N ( P )  = 2', where P  is a prime ideal. 

(vii) 1 7 0 ~  = P Q R ~ ,  N ( P )  = N ( Q )  = N ( R )  = 17, where P, Q and R  are 
distinct prime ideals. 
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The next lemma determines the class Kp of H(-68) when p is a prime such 

that (F) = 1. 

Lemma 2. Let p be a prime such that ( F) = 1. Then 

Kp = I +===+ p = x 2  + 17y2 ,for some integers x and y, 

Kp = A2 +===+ p = 2x2 + 2xy + 9y2 ,for some integers x and y, 

h', = A or A3 +===+ p = 3x2 dz 2x9 + 6y2 ,for some integers z and y. 

Proof As ( y )  = 1 there exist integers x and y such that 

and such that 

We recall that as p is a prime the only classes representing p are Kp and K,-'. 
Hence 

p = x 2 + 1 7 y 2  ===+ [1,0,17]  represents p * I=Kp or K;l ==+ Kp=I,  

p=2x2+2xy+3y2  ==+ [2,2.9] representsp* A 2 = h ;  or Kpl ==+ & = A 2 ,  

p=3x2dz2xy+6y2 ==+[3,2.6] representsp = = + A 3 = ~ ,  or K;' = = + ~ , - 4 o r A ~ .  

This completes the proof of Lemma 2. 

Definition 1. For s > 1 and E ,  r ]  E (-1, $1) we define 

and 
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For brevity we just write A+l,+l ( s ) ,  A+l,-l(s), ... as A++ ( s ) ,  A+- ( s ) ,  ... re- 
spectively. In view of Lemmas 1 and 2 we can split each of A++ ( s )  and B++ ( s )  
into two products as 

where 

and 

Lemma 3. For s > 1 we have 

Ac,,(s) = Bc'"2s), where e , q  E (-1, +I), 
BE,, ( 3 )  

and 

A;+(s) = 
Bi+ (2s) BY, (2s) 
B;+(s) ' A';+(s) = 

BY+ (4  ' 

Prooj: We just prove the first equality as the other two equalities can be proved 
similarly. We have 

from which the asserted result follows. 
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For s  > 1 the Riemann zeta function is given by 

where the product is taken over all primes p. If D is an integer with D = 0 or 1 
(mod 4) the Dirichlet L-series L(s ,  D )  ( s  > 1 )  is given by 

We prove 

Lemma 4. For s  > 1 we have 

B-- (2s)  B-+ (2s)  
( 2 2 )  L ( s ,  -4) = 

By- ( s )  B-+ ( s )  B+- (s)B++ (4,  

( is) B-- (2s)  
(iii) L ( s ,  17) = 1 - - B+- (2s )  El++ ( s ) ,  

B-- ( s )  B-+ (') B +  ( s )  

B-+ (2s)  B+- (2s)  
( i v )  L ( s ,  -68) = B-- ( s )  

B-+ (4  B+- (4  B++ ( 4 .  

Proof We just give the proofs of (i) and (ii). Equations (iii) and (iv) can be 
proved similarly. Let 

First we prove (i). We have 

from which (i) now follows by Definition 1. 
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Next we prove (ii). We have 

and (ii) follows using Lemma 3 .  

Lemma 5. For s > 1 we have 

Proof We obtain the asserted equalities by solving the equations (i)-(iv) in 
Lemma 4 for B--(s) ,  B-+(s),  B+-(s) and B++(s). rn 

The Dedekind zeta function for the field K is given by 

where the product is taken over all prime ideals of 01( 

Lemma 6. For s > 1 we have 
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ProoJ We split cK(s )  into seven products and make use of Lemma 1 to 
recognize each of these products in terms of the B,,,. We have 

( K  ( s )  = nln2n3n4n5n6n7, 

where 
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Multipying 111, 112, ... , 117 together, we obtain the asserted equality. 

Lemma 7. For s > 1 we huve 

Proof: The first equality follows by replacing B+- ( s ) ~  in the square of the 
equality in Lemma 6 by its value given in Lemma 5. The second equality then 
follows from B'++ ( S ) ~ B ~ + ( S ) ~  = B++ ( s ) ~  and the value of B + + ( S ) ~  given by 
Lemma 5. 

Lemma 8. 

367r2 
( i )  B-- ( 2 )  B-+ ( 2 )  B+-(2) B++ ( 2 )  = - 

289 ' 

Proof: By Lemma 4(i) we have (as C ( 2 )  = 7r2/6) 

which is (i). Then 

by (3.12)' Definition 1 and (i). 
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Lemma 9. 

Proof B y  [ 7 ,  Theorem 7.1, p. 3261 we have 

2'1+'27rT2R(K)h(K) 7r2 
lim ( S  - 1)CK(s) = - - - log 

( 1  + d m +  m) 
~ + l +  W ( K ) I ~ ( K ) ~ ~ / ~  4m 4 

As 
lim ( S  - l ) [ ( s )  = 1 

s+l + 

the asserted result follows. 

Lemma 10. 

Proof Dirichlet's class number formula [7, Theorem 7.1, p. 3261 for the 
quadratic field Q(&) of discriminant d asserts that 

and 

where b,(d)  is the class number of Q(&), q(d)  is the fundamental unit > 1 of 
Q(&) when d > 0, and w ( d )  = 2 , 4  or 6 according as d < - 4 ,  d = -4 or 
d = -3 when d < 0. As 

the asserted result follows. 

Lemma 11. 
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Proof By Lemma 5 we have 

Letting s + 1+ and appealing to Lemma 10, we obtain the asserted limit. 

Lemma 12. 

Proof: By Lemma 7 we have 

Letting s + 1+ and appealing to Lemmas 9 and 10, we obtain the asserted limit. 

We note (in the notation of Section 3) that 

9 
i f j  = l , 3 ,  

if j = 2. 

Lemma 13. 

1 7 m ~ - +  (2)B+-(2) 
j (A ,  -68) = j(A3, -68) = 

2 4 ~  log 
4 
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Proof: For 7. = 1 ,2 ,3  we have by (3.7) 

Thus, by Lemmas 1 and 2, we have 
2 2 

j ( A r l  -68) = lim 
s + ~ +  ($) = n ( Y )  = I ( 1 ; )  (+) = n (?I = I  (1- y) 

h', = I K ,  = A 

X 

Hence 

(by Lemma 3) 

The determination of j (A2 ,  -68) now follows by Lemma 1 1  
Finally 

j ( A ,  -68) = j (A3 ,  -68) = lim B : + ( S ) - ~ A ~ + ( ~ ) - ~ A - -  (2s)-l  
s-l+ 

B-- (2s) 
= lim (M) -' (by  emm ma 3) 

s-I+ B ? + ( ~ S ) ~ B - -  (4s)  By+ (s )  

The determination of j ( A l  -68) now follows by Lemma 12. 

Lemma 14. 
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Proof: From (3.10) we have for r = 0, 1, 2, 3 

3 
- - 

l(Am, -68) 
289Ji7 B-+ ( 2 ) ~ + - ( 2 )  c i-mr j(Aml -68) (by Lemma 8(ii)) 
1 7 2 8 ~  m=l 

The asserted results now follow by taking r = 0 and r = 2 and appealing to Lemma 
13. 

From Proposition 2(b) and Lemma 14 we obtain 

in agreement with [9, p. 72 11. 

Theorem 2. 

K [m] = 22-9/217-1/2~1/2( J1'5 - 4)'18 

Proof: We apply Theorem I(b) with X = 17 so that K = [ I ,  0,171 = I and 
Mo = [2 ,2 ,9]  = A2. We obtain 

By Lemma 14 we have 

so that 
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and Theorem 2 follows. 

In a similar manner it can be shown that the singular modulus k ( 1 7 )  is given 

by 

where 

u=21+5&?-8J2+2\/r j-6J; \ / r j -2 

and 

v = -19 - 5&?+ 8J2+2fi+ 6 J K .  
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