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An infinite class of identities relating infinite products is proved. I t  is shown that  this 

class contains a famous identity of Jacobi. 

Let N = { 1 , 2 , 3 , .  . .) a n d  No = { 0 , 1 , 2 , 3 , .  . .). Let @ denote  t h e  field of complex 

numbers. Throughout  this  paper  q E @ is such t h a t  /ql < 1. 

Let a(k1,  k2, k3, k4, kg) ( ( k l ,  k2, k3, k4, kg) E N i )  be complex numbers  (no t  all  zero 

a n d  nonzero for only finitely m a n y  ( k l ,  k2, k3,  k4, k 5 )  E N i )  such t h a t  

identically in x .  Examples are 

a(O, l ,  3 , 0 , 0 )  = 1, 

a ( l ,O ,0 ,0 ,3 )  = l ,a(O,O,0,3 ,0)  = -1 ,  

a ( k l ,  k2, k3, k4 ,  k 5 )  = 0 ,  otherwise, 

a(O, l ,  1 ,0 ,0 )  = 1, 

a(O,O, 0 , 1 , 0 )  = -1, 

a(1 ,  O,0 ,0 ,1)  = 1, 

a ( k l ,  k2 ,  k3 ,  k 4 ,  kg) = 0 ,  otherwise, 

( 1  + x ) ( l -  x )  - ( 1  + 22) + x ( 2 + x )  = 0;  
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I a(O,O, 2 , 0 , 0 )  = 1,  

a ( l ,O ,  0 , 0 , 0 )  = 4,  

a (0 ,  2 , 0 , 0 , 0 )  = -1, 

a ( k l ,  k2, k3, k4, k5) = 0 ,  otherwise, 

and 

a(O,O, 0 , 1 , 0 )  = 1, 

a (0 ,0 ,0 ,  0 , l )  = 1, 

a (O , l ,  0 , 0 , 0 )  = -3, 

a ( k l ,  k2 ,  k3,  k4 ,  k 5 )  = 0 ,  otherwise, 

The following example shows that there are infinitely many choices for the a ( k l ,  k 2 ,  k3. k4 .  k 5 ) .  

For each m E N we can choose 

\ 0 3  otherwise, 

by the binomial theorem. 

In Section 2  we prove the following identity relating infinite products. 

THEOREM 1 . 1 . Suppose that a ( k l l  k2, k3, k4, k 5 )  ( ( k l ,  k2 ,  k3 ,  k4, k 5 )  E N:) are 
complex numbers (not all zero and nonzero for only finitely many ( k l ,  k2, k3, k4, k 5 )  E Wg) 
satisfying (1 .1) .  Then 

m 
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In Section 3 we show that Jacobi's famous "aequatio identica satis abstrusa" [2, 

p. 1471 

is a special case of Theorem 1.1, see Corollary 3.1. Other identities which follow from 
Theorem 1 . 1  are given in Corollaries 3.2, 3.3,  3.4 and 3.5. 

Jacobi's theta function p ( q )  and Ramanujan's discriminant function A ( q )  are defined 

by 
m m 

12.1) v ( q )  = C qn2, A ( e )  = q n  (1 - on)". 
n=-03 n=l 

Set 

Then. as we showed in [l, equations (3.28)-(3.33)],  

If we write 

pk l ( l  + p ) k z ( i  - p)k3(1 + 2 ~ ) ~ ~ ( 2  + p)ks 

= C A ( ~ ) ' '  A ( ~ ~ ) "  ~ ( q ~ ) ' ~ ~ ( q ~ ) ' ~ ~ ( q ~ ) ' ~ ~ ( q ~ ~ ) ~ ' ~  

then C = 2k1+k5 and 
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and so 

Taking x = p in (1.1), and appealing to (2.4), we obtain the asserted identity. 0 

Our first corollary is the famous identity of Jacobi mentioned in the Introduction [2, 
p. 1471. 

COROLLARY 3.1. 

PROOF: With the choice (1.2), Theorem 1.1 gives 

Multiplying by 

we obtain 

Set 
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and 
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Lie have 

Also 

and 

From (3.1) we deduce 

so that  

as asserted. 

COROLLARY 3.2 
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PROOF: Using the choice (1.3) in Theorem 1.1, we obtain 

Multiplying by 

we obtain the asserted result. 0 

PROOF: Using the choice (1.4) in Theorem 1.1, we obtain 

Multiplying by 

we obtain the  asserted result. 
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PROOF: Using the choice (1.5) in Theorem 1.1, we obtain 

we obtain the asserted result. 

COROLLARY 3.5. For m E N 

PROOF: Using the choice (1.6) in Theorem 1.1, we obtain 

Multiplying by 

we obtain 
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Then,  multiplying b o t h  sides of t h e  equation by 

we obtained t h e  asserted result. 0 
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